(2) STEMLoyola

Practical Guideline 1

Programming and Data Structures in C++

Version 1.0

Last Update: November 2019

Copyright

© STEM Loyola 2019. All Rights Reserved.

No part of this guideline may be reproduced or transmitted in any form or by any means,
electronically or mechanically, including photocopying, scanning, uploading to any information
storage and retrieval system without prior written approval of STEM Loyola from Loyola High
School, Dar es Salaam, Tanzania.

This guideline is part of our practical guidelines series that includes:

e Practical Guideline 1: Programming and Data Structures in C++ (2019)
e Practical Guideline 2: Algorithms and Problem Solving in C++ (2020)

Connect with STEM Loyola:

Main website: https://www.stemloyola.org

Programming Challenges: https://challenges.stemloyola.org

Email: stemloyola@gmail.com

Twitter: @stemloyolatz (https://twitter.com/STEMLoyolaTZ)
Instagram: @stemloyolatz (https://www.instagram.com/stemloyolatz)
GitHub: @stemloyolatz (https://github.com/stemloyolatz)

https://www.stemloyola.org/
https://www.stemloyola.org/
https://challenges.stemloyola.org/
https://challenges.stemloyola.org/
mailto:stemloyola@gmail.com
mailto:stemloyola@gmail.com
https://twitter.com/STEMLoyolaTZ
https://twitter.com/STEMLoyolaTZ
https://www.instagram.com/stemloyolatz
https://www.instagram.com/stemloyolatz
https://github.com/stemloyolatz
https://github.com/stemloyolatz

Contents

COPYTIGNE ettt ettt ae b be b ebe b e b e b ese b e s e b essebessebessesessesensesasseseasessesessesesssensesensesensesan ii
CONERNES ..ttt ettt st ettt e b et e b et se st e s e e s se st e se b sae b ese b esesesessentesentesentesensesanes iii
DEAICALION ...ttt ettt et e e et e e et et e et e s e se et e b ese st tese e st esesaststesasasstesesantesesasansasesasantes v
ACKNOWLEAGEMENE ...ttt be e ese s ebe e s s ebe s ese s essssesseseseesessesessesenssensnans Vi
LiSE OF EXAMIPLESvoeveeeeeeeeeeeereteetetereeere et esesese et eseese s eseseeseseesessesessesessesessesensesensesensessesesssessesesssensens vii
LISE OF FIQUIES ...ttt ettt te st ste e essessesesbesbesbe b essessessessesessesensessensensensessesssensensensensensan viii
LISE OF TADLES .ttt sttt st sttt st st s s s s sesasaa e e e e e e et stsa st esssssssans viii
T INEFOAUCEION ettt sttt sttt et sttt s a st st e s e et st ssesasassesasansesane 1
1.1 GUIAELUNE ODJECLIVE ..ttt ettt et esesbe b ese s essensessessesessessensenes 1
1.2 What iS PrOGrammMiNg?.....ccceeeereereeeeeeeeeeeeseeseeseesessessessessessessessessesessessessessersessessessessesssesenss 1
1.3 Programming LANGUAGESceeceeeeereereerenteeeeeeeseeeerseessessessesssessessesssessasssessssssessessessaessassasns 1
1.4 Integrated Development ENVIrONMENE (IDE)......oouiveeiiiiieiericeeeteerererereseeseeseesseseesessessenns 2
2 G BaSICS ittt ettt s sttt st ettt et et s et b e e st s et e st e sa et e et e e ae e ese e ens 3
2.1 BACKGTOUNG.....eeeeeeeeeteececeeeeteete ettt eseeseeseesesessese s essessesaesaesensessensessessessesassensensensens 3
2.2 Program ENEMY POINE...eceecieeieeieenieereeieeeeeesesssesseesssesssesssessssesseesssesssessssssssssssssssesssesssesssans 4
2.3 HEAAET FIlS ittt ettt sttt s s s e et be e et st s e et s s sasasassssasasans 4
2.4 COMMIENES oottt ettt s ste st et e e st st et st e sae et s eesse et e ae st e e e sesatesse st satesaesteseessteneesnennten 5
2.5 SOUMCE COAE SEMUCEUNEucuieiereeeteteteetetereeteteteesetesesesesesesesesesessssesesassssesesessssesesanssssesessnnes 6
3 Basic Data Types (Primitive DAta SEMUCLUTES)oueveeereeeereeeeeeeeeeeereereerereeereeeeeseeseeeeseeseesenne 8
3.1 WhHole NUMDETS (INEEGETS) ...ueeirieceeeceereteetceetceeteeereeesesseressesessesessessesessesessesessesessesensessasennes 9
3.2 Decimal Numbers (REAl NUMDETS).......cuvieriiiereeereiereeereteeeere et eeseseeseseeseseesesesesesssenens 9
3.3 SiNGLE CRATACLETS .ottt e s eseeaebe b esaesaessessesessesensessensessessessesersensensenes 10
3.4 SEMNG (WOTAS AN TEXE) uuviuieeieieriicteicreecreectet ettt se s s ese s se s esessese s essesessesesssennens 11
3.5 Automatic Data TYPe (C++11 AN UP) ceoririeeriererereecrcreecreerrereesessessesessessessessesessessesense 12
4 BaSIC OPEIAEOIS..uiiiieerieereeetreereeteeseeestsesssesseesssesssesssssssssssesssesssasesssssssssssssssesssesssssssesssssssesssesssesans 13
4.1 MaAENS OPEIALIONS ...ttt seesessesessessessesseseeseesessessensensessessesesseesesensens 13
4.2 COMPATISON.cccuiieieereertrentrerreesaeesteesseesssesssesssesssesssessssesssesssesssesssessssssssesssesssesssesssesssessssssssesssenss 13
5 PrOGram CONETOL ccucevieeeieeieeieeeeieeteeteetetetetereeese e eseeseesebessessessessesseseeseesesensensensessessessessessssensensen 14
5.1 s ElS ettt b e et a e et b et e e se e se st eae st esenaesetenans 14
D2 SWIECN ettt ettt ettt ettt e bt b e e b b s et be e st ebesenerneseseneanes 17
LS (=Y o 7] o Lo o T USSR 18
6.1 WHILE LOOP ettt ese et ae bbb e s essesses e bessessessensessessessesassensensenss 18

6.2 DO...WHIlE LOOP.cuuiiitetetetcteteeeteeetetetetet ettt se e s b se s e s s se s bessese s esessessesessesensene 21

(S0 T To T il o Yo o U U 21
6.4 Range-Based FOr LOOP (CH+11 aNd UP).cucuieeieierereeereeeecseerrereeseesessesessessessessessessesessenss 23
6.5 NESEEA LOOPS...uitirereeereieeeeeteeteeteetesesteseesseseesseseesessessessensessessessesessasensensensessessessesassensensenes 24
6.6 Break and CONLINUEcccieieiieiteteeetetee et eest et et s e st se e et esa e s sesasassesssasasssesesennes 26
DALa SEMUCEUTES ...ttt eeesate et st e te et st e ae st e se st et e s st s st eses st sseessasseessesssensessesntessassesas 27
7.1 LiN@ar DAa SEMUCEUTES ...c..iieieieteieietereteieteest et et et sse e se st st esesasaeste et ssassenassesassensene 27
711 SEALIC ATTAY..eeeuieeireeireereeeeeteeseeesssesseesssesssesssasssassssesssesssesssassssesssesssesssesssesssesssesssassssessaense 27
7.1.2 DYNAaMIC ATTAY (3.K.3 VECEOT) ettt re s s esessesseseesessensens 29
T 1.3 SEACK ettt ettt sttt b e ettt b st se et st s e et et ene 32
T 14 QUEUE ...eeeeeeeeteeeeteeesteeeseseesseeeesseeesssasesasesssaasassasesssasasssessssessssasesssesasasenssessssesesssenssens 36
7.2 NON-LINEAT DALa SEMUCEUTESveeveverereteteereeenrensestestestestesessessessessessessessessessssessessessessensenes 39
T2 MAP ettt ettt et ettt sttt a e et ettt e s e et et s e et et e s e et tene 39
T.2.2 Sttt ettt ettt et e ettt et et b et s et et ebene b et e sanenetane 43
7.2.3 PriOTIEY QUEUE ..ueeeeeeeteeetteetecteeteestresstesstessaeessesssesssesssesssesssesssassssesssesssesssesssssssssnssenses 46
DALa SEMEAIMS ...ttt ettt et s e te et st ae st s e st st e ae st s be et st e se et s sesate s esnesatessaneane 48
8.1 Standard INPUL aNd OULPUEL SEFEAMISc.eeuvirieeierireretetetercrrerrereereeressesessesessessesessessesense 48
8.2 Redirecting the Standard INPUL aNd OUEPULoveveveieeeectecteeteteeetcce e 49
8.3 User Defined INput and OUEPUL SEFEAMIS.......coueereereerereereeeeereereereereererereeeeeseesseseeseesesenne 50
8.4 SEMNING SEMEAMS ..ceeeeecteeeeeeeeetetee e tee e s teete et s te e e s e sessessessesss e sassesssansasssessenseensansesnsessansenns 53
GUArding AGainSE USEI INPUL.....cuccveueieeereeereeeteeereeereeesessesesesessesesesssessssessesessesessesessesessesenseses 55
9.1 ANLICipating EXCEPLIONAL CASES ...uvivieererereereereeteceetereeeeeseeseeseeseesessessessessessessesesseesesensens 55
9.2 Handling INValid USEr INPUL.......cueeererieeeeereeeteeereeereeeseeseresseseseseesessesesaesessesessesessesesesssenens 56
9.3 Handling LONG SEFNG INPUEuecveeeeeiteeeteeeteeereeereeeteseseseseseseeseseesesaesessesessesessesensessnsenens 59
9.4 IGNOTING USET INPUE..ccueieiieiieeeecteeeceeceeeeteerestesseeseesteeseessesseessesssessessesssessessessaessessesssesseseen 59

This guideline is dedicated to all men and women who strive to live for others.

Acknowledgement

This programming guideline is a living document that receives regular updates. STEM Loyola is
grateful to the fFollowing individuals for their efforts and various contributions in compiling and
reviewing this guideline. In alphabetical order of first names, STEM Loyola thanks:

Content Writers:
1. Francis Sowani (Loyola Form Six Class of 2010, B.Sc. Computer Engineering)
2. Lidunda Moyo (Loyola Form Four Class of 2007, B.Sc. Electrical & Computer Engineering)

3. Victor Sowani (Loyola Form Six Class of 2015, B. Sc. Computer Science & Engineering)

Reviewers:

1. Alvin Mrema (Loyola Form Six Class of 2018)

2. Berwin Sengo (Loyola Form Six Class of 2010, B.Sc. Computer Science)
3. Nathaniel Mwaipopo (Loyola Form Six Class of 2019)

4. Vedastus Watosha (Loyola Form Six Class of 2019)

Vi

List of Examples

EXQMPLE 1: BINATY COAE ..uuniriniiteiereecreteteeteeeeteeetete s esesesessesssesssessesesssessesessesessesensesensesensesensesens 1
EXAMPLE 2: SHOTEESE Ctd COAE ittt ettt steresese s sessese s sessesessesessesesesensessasesens 4
EXQMPLE 31 HELLO WOTLA! .ttt ettt s bbb b s s be s sensese s esensesensesens 4
Example 4: Hello World With STD NAMESPACE ...ttt esestesesessessessessesessessensen 5
EXQMPLE 5: COMMIENLS «.eveeeeeriiereecteetieteereeteerestesetesessesseseesessessessessessessessessessesessensensensensessessessesessesensan 5
Example 6: Badly Structured SOUMCE COE....uuiiiriieeeeeetetetercrertesrere e eseesessessessessessessessesessessensen 6
Example 7: Badly Commented SOUTCE COE.....uiriiirerereeerererereseereeesesesesesessesessesesesesesssesens 7
Example 8: Well Structured and Commented SOUTce COdE......uinrerenreeereeereeereeereeereeeseesesens 7
Example 9: SEOriNG WHOLIE NUMDETS.......c.ivviieeieteeeteeeretetetetetereeerete et se e sessesessesessesessesensesssenens 9
Example 10: SEoring DeCiMal NUMDETS. ...ttt stesese s essesseseesessessensens 10
Example 11: SEOring SiNGLe CRAraClersS ... ieieiiciceeceecrecteetetetetetere e eeseesessesessessessessessesessessensons 10
EXQMPLe 12: SEOMING WOTAS/TEXE ...uviueireerieriretiteeeecrreseereesessessessessesessessessesessessessessessessessessessssessesons 11
EXample 13: AULOMALIC DALA TYPE wooueereereeeereteteeeeereereereeteetereteeeseseesseseeseesessessessessessessessesessensensens 12
EXamPple 14: BaSiC IF SEALEMENE.....c.ccviuieerieireeereetcreerereereeereeeressesesesessesesesesesessesessessesessesessesessesensens 14
Example 15: COMPOUNT IF SEAEEMENEcuivirieeriereriererierceereeereeereeereeeres s esesesesessesessesessesesssessens 15
Example 16: Shorthand If...Else (TErNAry OPErator).....c e icereereeeeeeeereereeresseseessesesessesessessessens 16
Example 17: Ternary Operator iN ACKION c....cceceeeereeerieteeteetetetereseereeeseesessessessessessessessessssessensons 16
Example 18: SWILCh...CaSE iM ACLION w...eeueeeeeieeeeictceeeteereeteeteret e esseseesessessessessessessessessesessessensens 17
EXQMIPLE 19 WHRILE LOOP «..eveereeeeeteeetecteeteeeteeteteteeeteseese e eseesese st eaesesaesseseeseesesensensessessessesessassensensens 18
Example 20: Non-Executed Body Of WHIle LOOP......cuoeieeciereiereecreeereecreeeseeeseresseseseesessesesesesnens 19
EXample 271: INFINIEE WHRILE LOOP .coviueereieeiecteectetctetcrereeeteeetee et s sesesesseseseesessesessenennens 19
Example 22: Non-Zero as True and Zer0 @S FalSe.......uieiriieeceeeeeeeeeteeteereseeeseseesseseessesessessens 20
EXGMPLE 23: DO..WHILE .ttt s e b e s s b a s s sa s e se s se s e e sesenesnene 21
EXQMIPLE 24 FOT LOOP..cuitieiiinrcnrceictecteeteeeeteetestetessessessessesessessessessensessessessessessssensessensensensensensessssessensons 22
EXQMPLE 25: INFINIEE FOT LOOP..cuuiiiiieeeeereeteeteteteeeeereeseeseeseesesestessessessesseseeseesesensessessessessessessesessensens 22
Example 26: Initializing Multiple Variables in FOr LOOPc.uouieveeeeeeeeeereereererereeeeeeeeeseeseeseesenens 23
Example 27: Range-based FOr LOOP (C++11 aNd UP) coueereeeeereeeieeeeereeeereereereereseeereesessessesseseesesens 23
Example 28: Generating @ DIiamoONd SRAPE ..ottt se s ese e ese s s nene 24
Example 29: Generating MUltiplication TabLec.ceeveeerereereeereeceeeeeeeee et ese s e 25
Example 30: CONLINUE NEXE IEEFALION......c.ccveeeeeeeereereeeteeereeereeereeere e sese s e sesesessesesesessesesssessene 26
EXQMPLE 371: BrEaK @ LOOP cucuveuveeeeeeerieteeieeteetecteteteteeeseesseseeseesesesessessessessessesessessensessessessessessessssessensons 26
EXQMIPLE 32: BASIC ATTAY...cuveveereereeeereereeteereeteereteteeesessessesessesesessensessersessesseseesessessessessessessessessssessensens 27
EXQamMPle 33: INIEIALIZE QN ATTAY ...ttt ettt eee s e ee e seesesbessessessessesseseessssessensens 28
Example 34: Accessing Array Elements (C++11 aNd UP) cucoeeveieeeeeeeeerenreereererereeeseeseseesessessesens 28
EXample 35: BaSiC DYNAMIC ATTAY ...ccvcueeeerireereeereereeereseeseseesessesessesessesessesessesssesssessssessesessesessesessesensens 29
Example 36: USING iLErators iN VECEOTS.......cecveeeeeerereereeereeereeeseeeseeesesesessesesesesessesesssessesessesessene 30
Example 37: Accessing Elements in a Vector (C++171 and UP)...cecceereeereeeerenecrerereereseeseseesesseseseens 31
Example 38: BasiC SLACK OPEIALiONSc.ecueeveeeiceeiereereteeteereerereteeeeeseeseeseeseesessessessessessessessessesessensens 33
Example 39: Stack Use Case (Balanced Symbols Problem)cceeveeeeeeeeceecreneeeeeeeeeereereerennens 35
Example 40: BasiC QUEUE OPEIALIONSocveveeeeivenreercercteereereerereresesessesseseesessessessessessessessessessssessessons 37
Example 41: Translation USING @ MaAP ...uceeeeeeieeeerceerceereeeseeesesesesesesesesesessesssessesesssessesessesessens 41
Example 42: Translation Using Map (C++11 @Nd UP) weeeeereeereeereeereeereeereeereeereeeseeseseesessesessesesnens 42
EXample 43: BasiC SEL OPEIALiONSceeeereeeeetireieierereereeteeresesesesessessessessesessessessessessessessessssessessens 43
Example 44: Set Operations (C++171 aNA UP) woeeeeeeeeeereereererereeeeereeeeeeseesessesesessessessessessssessesens 44
Example 45: Set Intersection (C++11 aNd UP) ...uvciceeieeereererereeerereeeeeeseeseesesesesessessessessssessensens 45

Example 46: Priority QUEUE iM ACLION ...uecvieeetiieictceeeteeteeteereereteteteseesseseesessessessessessessessessesessessensens 46
Example 47: Default Standard Input and OUEPUL SEFEAMIS.....c.vivervieerereerecrerererereeeeereeseesessensens 49
Example 48: Redirected Standard Input and OUEPUL SEFr@AMScvevevereeerecrerecrcreereeerereereeeneneene 50
Example 49: User Defined INput and OUEPUL SEFEAMSS........coueeereeereeererereeereeereeereereseeseseeseseesesnene 52
EXQMPLE 50: SEMNG SEFEAMvviveeiereeeereeereeeretereetereerereeseseeseeesessesesesessesessesessesensesensessesesssensesessesensene 53
Example 51: Data Conversion USiNG SEMNG SEFEAMSocueeviviiieeererieeereeteereereseseeeesseseseesessessessens 54
EXample 52: DiVISION PrODLIEM c...ueiuiieiceeetetetetctcetcteeteeeetetetetetee e eseesesbessessessessessessesssessensens 55
EXQmMPLe 53: WIONG USET INPULE.....oiuiirieieerieteetetctetetcreeteereeteeresestessessessesseseesessessessessessessessessessesessesens 56
Example 54: Guarding AgainSt Wrong USEr INPUE.......c.ceeeeereeereiererererereeesesesesessesessesessesessesesnens 57
Example 55: Guarding and Inspecting Wrong USEr INPUL.......ccocveeeeereeeerereereeereeereeseseeseseeseeeseseens 58
Example 56: Reading String Containing Space (Problem)cceeeeveeeeereceereeeeeceeeeeeeereeereeeneneens 59
Example 57: Reading String Containing Space (SOIULION)ccveveiieeieriereeetereeerceeeeeereereevenens 59
EXample 58: IGNOMING USET INPUL...c.uiiiierierieititetetcsresreteeteesesessessessessessessesessessessessessessensessessssessesons 60
Example 59: Ignoring User INPUL UNEil @ CharaCler ... uieeeeveiiececeeereeeeteereereveeeeesseseseeseesessessens 60
List of Figures

Figure 1: Selecting C++ version in COAEBLOCKS ...ttt srennen 3
FIQUIE 2: SEQCK OF PLAEES ..ttt ese s s b s s s ese b e besesessesessenennens 32
FIQUre 3: QUEUE OF PEOPLE ...ttt se s se s s s b e ne e sessesessnennene 36
Figure 4: Default Standard Input and OULPUL SEFrEAMS........ceveveeeerereereereeteererereeereeee e eseesesnens 48
Figure 5: Redefined Standard Input and OUEPUL SEFEAMS.......ccueeereeereeeerereeereeeeeere s s e 49
Figure 6: User Defined INpUt and OULPUL SEFEAMSceeveeerereereiereeereeereeesesesesessesesssessesessesesnens 51
FIigure 7: SEMNG SEFEAM c...uieeeeieceeeeeteeee e ctee e stes e steesee e esesssesaessesssesassesssessesssessessasssessesssensensesnsensenses 53
List of Tables

Table 1: COMMON CH+ HEAAET FilES...uuriireeereiereecteeeeteeeeete et seese s e se e sessese s e sese s sesessenennens 4
Table 2: BasiC DAta TYPES IN CH+auuriueieceeereeeeererereterereeseeseeseesessesessessessessessessesessessensessessessessessessssesens 8
Table 3: SUPPOrted BasiC OPEratioNS.........ccccviieeeeirieiereereereeerereeeseeseeseeseesessessessessessesseseesessensenss 13
Table 4: CompariSON/LOGICAl OPEIrALOrS.......cuceeviieeeeetieereecteecetetesre e seseseesessesessesessesessesessesensenes 13
Table 5: COMMON VECEOr OPEIALIONS......ccuieeieirerceicreeeceeteereereteres e esressesessessessesessessessessesessessensenss 31
Table 6: COMMON SEACK OPETALIONScuverieririreteierecrtceeteeresresrestesresresressesessessessessessessessessessssessensenss 33
Table 7: COMMON QUEUE OPEIAEIONS......cuiceieerereeiereceecteereeresresretesresserseseesessessessessensessessessesessessensenss 37
Table 8: COMMON SEE OPETALIONScveriereeeeeetetetereeeeereete et sressessessesseseeseesessessensessessesseseesesensenss 44
Table 9: Common Priority QUEUE OPETALIONScveeeiereereeretererereeeeereeseereeresessessesesseseeseesesenne 46

viii

1 Introduction

1.1 Guideline Objective

This document is a concise guideline to help you understand key concepts in programming.
Priority has been given to those concepts that are critical to helping you gain vital skills and
become competitive in STEM Loyola Programming Challenges and related programming
contests.

1.2 What is Programming?

This guideline is about programming. Put simply, programming is an act of instructing
computers to carry out tasks or actions. Programming is often referred to as coding. A person
who writes the instructions is called a programmer (also known as a coder or a software
developer). A complete set of instructions that a computer can execute is called a program (also
known as code, application, or app). When a computer performs the tasks/actions contained in
a program, we call this executing or running the program.

1.3 Programming Languages

Computers can understand only one language called machine language. English has 26 letters
inits alphabet, but machine language has only two letters: one (1) and zero (0). In programming,
we call these two letters as binary digits or bits in short. When instructions are written in
machine language, the resulting code is called machine code. Below is an example of machine
code for the words “Hello World".

01001000 01100101 01101100 01101100 01101111 00100000 01010111 01101111
01110010 01101100 01100100

Example 1: Binary Code

A language like this that one can use to instruct computers is called a programming language.
Machine language is an example of a low-level programming language. It is called low-level
because the instructions need little or no translation before a computer can understand.
Assembly language is another kind of low-level programming language. Assembly code needs
to be translated to machine code before computers can execute. As you may have guessed,
writing instructions in machine language is not ideal for us.

There are programming languages that are closer to human languages like English. These are
called high-level programming languages. Examples include C, C++, Python, Java, JavaScript,
PHP, and Visual Basic. In this guideline, we will only use C++.

When a program is written using a high-level programming language, it has to be translated to
a machine language before it can be executed by a computer. This process is called compiling
or interpreting. Programs that can perform the translations are called compilers or interpreters

respectively. Interpreting involves translating and executing one instruction at a time. On the
other hand, compiling involves translating all the instructions before a single one can be
executed. Programming languages that support interpreting are like PHP, JavaScript, and
Python. Those that support compiling are like C, C++, Java and Visual Basic.

1.4 Integrated Development Environment (IDE)

An Integrated Development Environment (IDE) is an application that contains all the necessary
tools required to write and test code effectively. Simply, it is the application that you will need
to create, test, and run your programs.

For C++, we recommend CodeBlocks. You can download CodeBlocks from the official website
at https://www.codeblocks.org/downloads/26. A walkthrough tutorial is available from the
official STEM Loyola YouTube channel at https://youtu.be/AQOOqgn6IpQ. The video will walk
you through downloading, installing, and setting up CodeBlocks in Windows.

Visit https://challenges.stemloyola.org/article/recommended-ides for a comprehensive list of
IDEs we recommend for other programming languages like Python, Java, and JavaScript.

https://www.codeblocks.org/downloads/26
https://youtu.be/AQOOqgn6IpQ
https://challenges.stemloyola.org/article/recommended-ides

2 C++ Basics

2.1 Background

C++ is a programming language developed in 1980 by Bjarne Stroustrup at the Bell Telephone
Laboratories in the United States. C++ is an enhanced form of another programming language
called C. C++ is an object-oriented programming (OOP) language, which follows OOP concepts
like inheritance, encapsulation, abstraction, and polymorphism.

Like most other programming languages, C++ comes in many versions. Newer versions bring
improvements as well as remove or add new features to the language. C++ has the following
standard versions:

e C++98is the first edition (1998)
C++03 is the second edition (2003)
C++11 is the third edition (2011)
C++14 is the fourth edition (2014)
e C++17is the fifth edition (2017)

Currently, C++ Standards Committee is responsible for C++ releases and has currently fixed a
three-year release cycle. As of 2019, the next version (C++20) is currently under preparations.

Important:

e Please confirm the C++ version that will be used for your NECTA practical exams ahead
of time. It is probably the second edition (C++03).

e When you install CodeBlocks, by default it selects the second edition (2003) of C++. If
you use features introduced in C++11 and above, you will have to explicitly select the
desired C++ version. From Settings section, go to Compiler.. and check the box
corresponding to the desired C++ version as shown in the figure below for C++11.

I - -
| | Global compiler settings Compiler settings Linker settings Search directories Toolchain executables Custom variables Build options 1 4 | *

Policy:

|

| Compiler Flags Qther compiler options ~ Other resource compiler options #defines
| E General ~
|

Have g++ follow the 1998 ISO C++ language standard [-std=c++98] [

Profiler settings
Have g++ follow the C++11 150 C++ language standard [-std=c++11]
Have g++ follow the C++14 150 C++ language standard [-std=c++14] []
'y Have g++ follow the coming C++0x (aka c++11) ISO C++ language stan []
5‘- Have g++ follow the coming C++1y (aka C++14) ISO C++ language star [
Have g++ follow the coming C++1z {aka C++17) 150 C++ language star [
— Have gee follow the 1990 1SO C language standard {certain GNU extensio []

Haua are Frllria Hha 1000 TEO © lammmna otzndoed Tobd —-0o] i

Figure 1: Selecting C++ version in CodeBlocks

2.2 Program Entry Point

In writing a C++ program, the first instruction to be executed will be the first instruction inside
the main function. The following is the simplest way to define the main function, and also the
smallest C++ code you can write. The code does not contain any instructions and hence, does
nothing.

main(){ }

Example 2: Shortest C++ Code

2.3 Header Files

C++ includes many built-in instructions that we can re-use to write our own instructions. These
built-in instructions are collected in special files called header files. The following table
describes some common header files in C++.

Table 1: Common C++ Header Files

Header File Description
. Support for data input from the standard input (keyboard) and data
l1ostream
output to standard output (console screen)
fstream Support for reading and writing data to and from files
. . Support for formatting data during data input/output e.g. setting how
iomanip . .
many decimal places should be displayed
string Support for manipulating text
cmath Support for mathematics operations
limits Support for defined limits like what is the largest supported integer value
algorithm Support for common algorithms like sorting

In C++, you can inform a compiler that you want to use a particular header file using the
include keyword. The following program displays “Hello World!" to the console screen using
the cout keyword. endl keyword ensures that the words are written on their own line.

#include<iostream> // cout, endl

int main() {
std::cout << "Hello World!" << std::endl;

return 9;

Example 3: Hello World!

Inside a header file, it is common to group similar instructions. In C++, we call such groups as
namespaces. cout and endl belong to a group/namespace called std (i.e. standard namespace).

We can avoid having to write the group/namespace over and over again by specifying to the
compiler the default namespace to look into. The above program can be re-written as follows.

#include<iostream> // cout, endl
using namespace std;

int main() {
cout << "Hello World!" << endl;

return 0O;

Example 4: Hello World with STD Namespace

2.4 Comments

Comments are part of your program that you want a compiler to ignore. It is a good practice to
add comments throughout your program code to describe what different parts are doing. This
is useful when you work with others or for your own future reference. You can specify a
comment using either // or /* */.Below is the Example 4 re-written with comments.

/*
Author: STEM Loyola
Year: 2019

*/

#include<iostream> // cout, endl
using namespace std;

int main() {

// Greet the world
cout << "Hello World!" << endl;

return 0;
}
Example 5: Comments
Note
o // can only be used for a single line comment

e /* */ canbe used for both single line and multiple line comments

2.5 Source Code Structure

You may have noticed that in the examples provided so far, each instruction is written in its
own line. Sometimes an empty line is included between instructions. Also, lines inside the
main () begin with space. First of all, the action of adding space at the beginning of some lines
is called indentation. It is used to mark a group of instructions belonging to the same block. This
is not needed by the compiler, but it helps other programmers or yourself to read/understand
the source code quicker.

C++ compilerignores any space between different instructions. Actually, different instructions
can be written on the same line or asingle instruction can span different lines. Also, C++ permits
empty statements (i.e. statements that just have the semicolon) like Line 6 in Example 6.
Multiple statements can be grouped using curly braces, { }. Usually, this is done to group
statements executed under structures like Ffunctions, if...else, and loops. However,
unnecessary grouping can lead to hard-to-read source code (like in lines 10 and 15 in Example
6). Below is a badly structured C++ code but it is valid nonetheless.

1. #include<iostream > // cout, endl
2%

3. using namespace

4.

5. std;

6. 2

7. int

8. main(

9.

10.) { {{{cout

11. << "Please don't write your code like this!"
12. <<

13. endl

14. ;}}

15. }cout << "Please don't!" << endl;;; {{return 0;}} }

Example 6: Badly Structured Source Code

Making matters worse. Comments can be added at almost any part of the code. When we say,
“at almost any part”, we really mean at almost any part! Below is a poorly commented code, but
again, it is still a valid C++ code.

#include /* one */ <iostream> // cout, endl
using /* two */ namespace std;

int /* three */ main(/* four */) {
cout << /* five */ "Please don't write your code like this!" << endl;
cout << "Please don't!" << endl;
; /* these are two useless empty statements */ ;
return /* six */ 0;

Example 7: Badly Commented Source Code

Compare the above two examples with the one below which showcases a well written and
commented source code. Hence, it is not enough to write valid code, but you should strive to
write well-structured and appropriately commented code, that is not only easier to
understand but also beautiful to look at.

#include <iostream> // cout, endl
using namespace std;
int main() {
// Display a message
cout << "Please write your code like this!" << endl;

cout << "Please!" << endl;

return 0;

Example 8: Well Structured and Commented Source Code

3 Basic Data Types (Primitive Data Structures)

Programs process different kinds of data such as whole numbers, decimal numbers, text,
images, sounds, and videos. Before programs can process such data, the data needs to be
stored in memory using structures called variables. Variables contain an address of the location

in memory where a particular data is located.

In a program, we can define a variable by stating two things:

i. name: the label that we will use inside our program to refer to the variable
ii. data type: the type of data that a variable will store. This information is used by a
compiler to determine how much space in memory should be set aside for the variable.

The following table summarizes the basic data types in C++.

Table 2: Basic Data Types in C++

Category Data Type C++ Keyword Description
Small integers short int Integers between -32,767 and 32,767
. . Integers between -2,147,483,648 to
t 1 1 1
Whole Normal integers in 2.147,483,647
numbers Integers between
Large integers long long int |.9,223,372,036,854,775,808 and
9,223,372,036,854,775,807
Sinale precision Can accommodate seven digits. Its
Ingle precist float range is approximately 1.5 x107*° to
decimal numbers 3.4 x103°
Decimal X
Numbers . Can accommodate 15 to 16 digits,
Doqble Precision | 4, p1e with a range of approximately
decimal numbers 345 308
5.0x10 to 1.7 x10
Characters | ASCIl characters char Individual letters, numbers, and
symbols
Text String string Text such as words, sentences,
paragraphs, etc.
Logical Boolean bool Stores the two logical values: true or
values false
Is used in some cases such as
. . functions to indicate that no values
d . .
Nothing No data type Vot will be passed into or returned from
the function

The above data types can be used to store data as follows:

3.1 Whole Numbers (Integers)

#include<iostream>» // cout, cin, endl
using namespace std;

int main() {
// Request and display the user's age

cout << "Enter your age: ";

int age;
cin >> age;

cout << "You are " << age << " years old!" << endl;

return 0;

}

Enter your age: 19
You are 19 years old!

Example 9: Storing Whole Numbers

3.2 Decimal Numbers (Real Numbers)

#include<iostream> // cout, endl
#include<iomanip> // setprecision

using namespace std;

int main() {
// Displaying the value of PI in single precision
// (Reliable to 7 decimal places)
float pi_s = 3.141592653589793238462643383279;
cout << "SINGLE PRECISION:" << endl;
cout << "Default decimal places: Pi = " << pi_s << endl;
cout << "20 decimal places: Pi = " << setprecision(20) << pi_s << endl;

// Displaying the value of PI in double precision

// (Reliable to 15 or 16 decimal places)

double pi_d = 3.141592653589793238462643383279;

cout << "DOUBLE PRECISION:" << endl;

cout << "20 decimal places: Pi = " << setprecision(20) << pi_d << endl;

return 0;

SINGLE PRECISION:
Default decimal places: Pi = 3.14159

20 decimal places: Pi = 3.1415927410125732422
DOUBLE PRECISION:

20 decimal places: Pi

3.141592653589793116

Example 10: Storing Decimal Numbers

When the output of the above program (second box) is inspected, it can be seen that using
float, the value of Piis correctly captured to about seven decimal places. When using double,

the value is correctly captured to about 15 or 16 decimal places. This is critical to remember
when dealing with real numbers.

3.3 Single Characters

#include<iostream> // cout, endl
using namespace std;

int main() {
char physics_grade = 'A';
char maths_grade = 'B';
cout << "Physics: " << physics_grade << endl;
cout << "Maths: " << maths_grade << endl;

return 0;

}

Physics: A
Maths: B

Example 11: Storing Single Characters

10

3.4 String (Words and Text)

#include<iostream>» // cout, cin, endl

using namespace std;

int main() {

}

// Request and display user's name

cout << "Enter your first name: ";

// Input user's name (only the first word/name is captured)
string name;
cin >> name;

cout << "Nice to meet you " << name << "!" << endl;
// Clear the rest of user input
cin.ignore();

// Request and display user's school motto
cout << "What is your school motto? ";

// Input the entire line (capture everything user types before
// pressing <Enter>

string motto;

getline(cin, motto);

cout << "So your school motto is \"" << motto << "\"" << endl;

return 0;

Enter your first name: Aisha

Nice to meet you Aisha!

What is your school motto? Men and Women for Others!
So your school motto is "Men and Women for Others!"

Example 12: Storing Words/Text

Note: Please refer to section 9.3 Handling Long String Input for more examples on capturing
stringinput from a user. Section 9.4 Ignoring User Input elaborates more on ignoring user input.

11

3.5 Automatic Data Type (C++11 and up)

Since the 2011 version of C++ (C++11), you can let the compiler predict the data type of a
variable using auto keyword. When using auto, the variable must be initialized because the

compiler will infer the data type from the data that is being stored in the variable. Refer to
Example 13.

Note: You must have C++11 or later selected for this example. Refer to Figure 1: Selecting C++
version in CodeBlocks for instructions on how to specify C++ version in CodeBlocks.

#include<iostream> // cout, endl
using namespace std;
int main() {

auto name = "Alice";

auto age = 17;

cout << "Next year, " << name << " will be " << age + 1 << "!I" << endl;

return 0;

}

Next year, Alice will be 18!

Example 13: Automatic Data Type

12

4 Basic Operators

C++ supports most of the basic mathematical and comparison operations on data.

4.1 Maths Operations

C++ support the basic mathematics operations using the following operators:

Table 3: Supported Basic Operations

Operation C++ Operator Example
Assignment = int age = 18;
Brackets () int results = (1 + 4);
Division / float pi = 22.0 / 7;
Multiplication * int product = 6 * 82;
Addition + int sum = 5 + 9 + 18 + 19;
Subtraction - int difference = 875 - 8;
| tb -+ int x = 2;
nerement by one X++; // Now the value of x is 3
D tb _ int x = 2;
ecrement by one X--; // Now the value of x is 1
// y contains the remainder of
Modulus % // dividing 17 by 5
inty =17 % 5;

4.2 Comparison

Table 4: Comparison/Logical Operators

Comparison C++ Operator

Equal to ==
Not equal to 1=
Greater than >
Greater than or equal to >=
Less than <
Less than or equal to <=
And &&
Or Il
Not !

13

5 Program Control

In life, we make decisions and take different actions depending on the decision we make. For
instance, at some point during O-Level, students decide to either take Science, Commercial, or
Arts streams. The subjects that students will study in Form 3 and 4 depend on this decision.

Likewise, in programming, we need to be able to take a different course of action depending
on user’s actions or available data. For instance, allowing a user to open a file or not depending
on if the user has permissions to view the file or not. A number of program control structures
are available in C++ to support us to achieve this.

5.1 If...Else

This is the simplest decision-making structure. In its simplest, it takes a general form of:

if (condition) body

Where statements inside body will be executed if the condition is true (or non-zero). For
instance, in Example 14, although the greeting “Hello!” will always be displayed, the phrase
“You are ready for school!” will only be displayed if ageis more than 5 years.

#tinclude<iostream> // cout, endl
using namespace std;

int main() {
int age = 10;

cout << "Hello!"™ << endl;
if (age > 5) cout << "You are ready for school!" << endl;

return 0;

}

Hello!
You are ready for school!

Example 14: Basic If Statement

Usually, a decision involves multiple conditions and a course of action for each condition. A
compound jf statement has the following general form:

if (condition-1) body-1I
else if (condition-2) body-2

else if (condition-n) body-n
else default-body

14

Each if or else if will have its own condition and a body of statements that will be executed if
that condition is true (or non-zero). If none of the conditions are evaluated to be true, then the
default-body defined in else will be evaluated. In a compound if statement, only one body will
be executed. Either of the first condition to be evaluated as true or of the else part. If the
compound jf statements contains more than one conditions that are true, only the first one will
be executed.

Note: if the body contains more than one statement, they must be surrounded by curly braces,
{}. If the body contains only a single statement, the curly braces are optional and a matter of
personal preference or agreed rules (if you are coding with others as part of a project).

1. #include<iostream> // cout, cin, endl

2

3. using namespace std;

4.

5. int main() {

6. cout << "Enter your exam score: ";

7. int score;

8. cin >> score;

9.

10. if (score > 100 || score < 0) {

11. cout << "Invalid score!" << endl;

12. } else if (score > 80) {

13. cout << "That's a grade of A" << endl;
14. } else if (score > 60) {

15. cout << "That's a grade of B" << endl;
16. } else if (score > 40) {

17. cout << "That's a grade of C" << endl;
18. } else if (score > 20) {

19. cout << "That's a grade of D" << endl;
20. } else {

21. cout << "That's a grade of F" << endl;
22. }

23.

24, return 0;

25. }

Enter your score: 78

That's a grade of B

Example 15: Compound If Statement
In Example 15, we can understand the if statements as follows.

e Line 10: checks if the score is negative or more than 100. This is an invalid score.

e Line 12: at this point, the score will be a number from 0 to 100 (otherwise it would have
been captured by Line 10). Line 12 checks if the score is more than 80 and evaluates this
as grade of A. There is no need to check if the score is less than 100 (score > 80 &&
score <= 100) because Line 10 already eliminated all the scores above 100 as invalid.

e Line 14: checks if the score is more than 60 and evaluates this as a grade of B. There is
no need to also check if the score is less than 80 (score > 60 && score <= 80) because
if was more than 80, Line 72 would have captured it and Line 74 would not be executed.

15

e The same principle applies to lines 16 and 18.

e Line 20: captures the remaining possible situation if all above conditions are false: the
score is between 0 and 20. This is evaluated as grade of F.

Most of the time, compound jf statements contain two cases: it is either this way or that way.
This is very common that it has a one-line shorthand structure for it called a conditional/ternary
operator with the following general form:

condition ? body-if-true : body-if-false ;

This can be seen in action in Example 16 below.

#include<iostream> // cout
using namespace std;

int main() {
int age = 13;

age >= 18 ? cout << "Can drive!\n" : cout << "Cannot drive!\n";

return 0;

}

Cannot drive!

Example 16: Shorthand If...Else (Ternary Operator)

The ternary operator is especially useful when we need to assign a value that is based on
another condition. Consider a case where you want to manually find the magnitude of a
number. For instance, the magnitude of -5 is 5 and the magnitude of 5 is 5. We can accomplish
this as shown in Example 17.

#include<iostream> // cout, endl
using namespace std;

int main() {
int num = -777;

int magnitude = (num > @) ? num : -num;
cout << "Magnitude: " << magnitude << endl;
return 9;

}

Magnitude: 777

Example 17: Ternary Operator in Action

16

5.2 Switch

Switch statement simplifies building long compound jf statements that compare a variable to
several integral values. Switch takes the following general form:

switch (variable) {
case value-1: body-1; break;
case value-2: body-2; break;

case value-n: body-n; break;
default: default-body,

A common application of switchis during the evaluation of user input.

#tinclude<iostream> // cout, cin, endl
using namespace std;

int main() {
cout << "Please select the next action:" << endl
R L EEE L LT " << endl
<< "1. Quit the program.” << endl
<< "2. Resume the program." << endl
<< "3. Restart the program." << endl

<< "Enter your choice: ";

int choice;
cin >> choice;

switch (choice) {
case 1: cout << "Quitting...
case 2: cout << "Resuming..." << endl; break;
case 3: cout << "Restarting..." << endl; break;
default: cout << "Invalid choice!" << endl; break;

<< endl; break;

}

return 0;

Please select the next action:
1. Quit the program.

2. Resume the program.

3. Restart the program.

Enter your choice: 3
Restarting...

Example 18: Switch...Case in Action

Note: If break is omitted, all the statements fFollowing a matching case will be executed until a
breakis found or the end of switchis reached.

17

6 Repetition

Loops are used when a similar action needs to be performed repeatedly for a given number of
times or until a certain condition is met. There are two forms of loops in C++:

i. Forloop — usually used when repetition is for a given number of times
ii. Whileloop — usually used when repetition should continue until a condition is met

However, any forloop can be re-written using a while loop and vice versa.

6.1 While Loop

A while loop has the following general form:

while (condition) body

If the value of the conditionis true (or non-zero), the body will be executed. Then, the condition
will be tested again, if it is still true (or non-zero), the body will be executed again. This will
continue until the conditionis false.

Forinstance, the following loop will print all positive numbers less than ten.

#include<iostream> // cout
using namespace std;

int main() {
int num = 1;

while (num < 10) {

cout << num << " ";
num-++;
return 9;

}

1234567289

Example 19: While Loop
Note:

i. The body can be a single statement or more. If the body has more than one statement,
the statements must be enclosed between the curly braces as shown in Example 19.
ii. In Example 19, the body is executed nine times before the condition becomes false
(when num=10since the expression “70 < 10" is false).
iii. It is possible that the body of loop will never be executed. This happens when the
condition can never be true. Like in the following example, a number cannot be less than
itself.

18

#include<iostream> // cout
using namespace std;

int main() {
int num = 1;

while (num < num) {

cout << num << " ";
num++;

}

return 0O;

Example 20: Non-Executed Body of While Loop

iv. Also,if the condition cannot become false, the bodywill be executed repeatedly without
end (infinite loop).

#include<iostream> // cout, endl
using namespace std;
int main() {

while (true) {

cout << "Run this at your own risk!" << endl;
}

return 9;

Example 21: Infinite While Loop

v. Also, belowisanexample that demonstrates that the condition will be evaluated as true
if a non-zero number is passed and as false if a zero is passed.

19

#tinclude<iostream> // cout
using namespace std;

int main() {
int num = 10;

while (num) {

cout << num << " ";
num--;
}
return 0O;

10 987 654321

Example 22: Non-Zero as True and Zero as False

20

6.2 Do...while Loop

In C++, the while loop can be written to begin with the body. This can be useful in such cases
when the body must be executed at least once. In Example 23, “Hello buddy!!” greeting will be

displayed at least once. The exact number of greetings that will be displayed will depend on
user's input.

#include<iostream> // cout, cin, endl
using namespace std;

int main() {
cout << "Enter 'Y' to stop or any other letter to repeat" << endl;

char response;

do {
cout << "Hello buddy!!" << endl;
cin >> response;
} while (response != 'Y' && response != 'y');

return 0;

Example 23: Do...While

6.3 For Loop

A forloop has the following general form:

for (initialization; condition,; increase) body

Similar to the whileloop, in a forloop, the body will be executed as long as the conditionis true.
In addition, a forloop contains two additional segments:

i. Initialization: this statement is executed only once, at the beginning of the loop. Usually,
this defines and initializes a counter variable.

ii. Increase. this statement is executed between iterations of the loop. Usually, this
increments or decrements the counter that tracks the loop execution.

Note: An iteration is a single execution/repetition of a loop. For instance, in Example 24, the
loop repeats five times. Hence, we say, the loop had five iterations. In iteration 1, it displayed
A. In iteration 2, it displayed B. This continues until iteration 5 where it displays E. After this,
the value of “c” becomes ‘F' and the expression “F < F” becomes false. Hence, the loop
terminates.

21

#include<iostream> // cout
using namespace std;

int main() {

for (char c = 'A"; c < '"F'; c++) {
cout << c << " "
}
return 9;
}
A B CDE

Example 24: For Loop

In a forloop, any of the parts (initialization, condition, or increment) can be omitted. An easy
way to create an infinite loop is to omit all the three parts as shown below.

#include<iostream> // cout, endl
using namespace std;

int main() {

for (5 5) Ao
cout << "This is an infinite loop!" << endl;
}

return 0;

Example 25: Infinite For Loop

Also, more than one variable can be initialized or incremented in a for loop. If all the variables
to beinitialized are of the same data type, they can also be defined in the initialization part. If
they are of different data types, they must be defined outside the forloop. In Example 26, we
count from A to E and display the letters with the first five odd numbers. Since num and ch are
of different data types, they have been defined outside the forloop.

22

#include<iostream> // cout
using namespace std;

int main() {

int num;

char ch;

for (num = 1, ch = '"A'; ch < "F'; num += 2, ch++) {

cout << ch << num << "\t";

}

return 0O;

}
Al B3 C5 D7 E9

Example 26: Initializing Multiple Variables in For Loop

6.4 Range-Based For Loop (C++11 and up)

Since C++11, C++ includes a shorthand syntax for a for loop that is especially useful in
accessing individual values in a list/array.

Note: You must have C++11 or later selected for this example. Refer to Figure 1: Selecting C++
version in CodeBlocks for instructions on how to specify C++ version in CodeBlocks.

#tinclude<iostream> // cout, endl
using namespace std;

int main() {
string studentsList[] = { "Anne", "Bakari", "Caren", "Daudi" };

for (string name : studentsList) {
cout << name << endl;
}

return 0;

}

Anne
Bakari
Caren
Daudi

Example 27: Range-based For Loop (C++11 and up)

Also, in the shorthand version, you can let a compiler automatically select the data type using
the auto keyword. The header of the forloop in Example 27 can be also written as follows.

for (auto name : studentsList) {

23

6.5 Nested Loops

The body of one loop can contain other loops. This is called nesting the loops. Loops can be
nested to solve various problems.

Example 28 generates a diamond shape using asterisk (*) character, space, and nested for
loops.

#include<iostream> // cout, endl
using namespace std;

int main() {
const int SIZE = 5;

// Display the top triangle
for (int row = @; row < SIZE; row++) {
cout << endl; // Start a new row

// Add space before the asterisks
for (int col = SIZE-row-1; col > @; col--) cout << " ";

// Display the asterisks
for (int col = ©; col < 2*row+l; col++) cout << "*";

}

// Display the bottom triangle
for (int row = @; row < SIZE; row++) {
cout << endl; // Start a new row

// Add space before the asterisks
for (int col = @; col < row+l; col++) cout << " ";

// Display the asterisks
for (int col = 2*(SIZE-row)-3; col > ©; col--) cout << "*";

}

return 0;

*

* kK

* k kk*k

*kkk kKK

Kk k kK Kk kK Kk

kK k kKKK

* kK k Kk Kk

* x K

*

Example 28: Generating a Diamond Shape

24

Example 29, generates a multiplication table using nested loops.

#include<iostream> // cout, endl
#include<iomanip> // setw

using namespace std;

int main() {
const int SIZE = 10;
const int SPACE = 4;

for (int row = 1; row <= SIZE; row++) {
cout << endl;

for (int col = 1; col <= SIZE; col++) {

cout << setw(SPACE) << row * col << " ";

}

}

return 0;

¥

2 3 4 5 6 7 8 9 10
4 6 g8 10 12 14 16 18 20
6 9 12 15 18 21 24 27 30

8 12 16 20 24 28 32 36 40
15 20 25 30 35 40 45 50
12 18 24 30 36 42 48 54 60
14 21 28 35 42 49 56 63 70
16 24 32 40 48 56 64 72 80
18 27 36 45 54 63 72 81 90
20 30 40 50 60 70 80 90 100

O W U WN -
[
o

=

Example 29: Generating Multiplication Table

25

6.6 Break and Continue

Break and continue are used within loops to control execution of the body of the loop. Continue
stops the execution of the current iteration and goes to the next iteration if the condition of
the loop is still true. Break stops the execution of the current iteration and exits the loop
regardless of the condition of the loop.

In Example 30, for all even values of num, the execution of the iteration is stopped before the
number can be printed in Line 10.

#include<iostream> // cout
using namespace std;
int main() {

for (int x = 1; x <= 10; x++) {
if (x % 2 == @) continue; // Stop iteration if number is even

coNOUVTh WNBR

10. cout << x << " ";
11. }

13. return 9;

13579

Example 30: Continue Next Iteration

In Example 31, when numis 7, breakis executed, and the loop execution stops. As a result,
only 1 through 6 gets to be displayed.

1. #include<iostream> // cout

2o

3. using namespace std;

4.

5. int main() {

6.

7. for (int num = 1; num <= 10; num++) {
8. if (num == 7) break; // Stop the entire loop if number is seven
9.

10. cout << num << " ";

11. }

12.

13. return 9;

14. }

1234586

Example 31: Break a Loop

26

7 Data Structures

To become a good programmer, one needs to master the use of both: data structures and
algorithms. A data structure is a particular way to store and organize data in a computer
memory that enables effective and efficient processing of the data. In this context, an
algorithm refers to a well-defined procedure that enables a computer to solve a particular
problem. This guideline will focus on data structures and some examples of their application.

Please refer to Practical Guideline 2: Algorithms and Problem Solving in C++ fFor an in-depth
coverage of algorithms.

7.1 Linear Data Structures

A data structure is classified as linear if its elements are organized in a sequence.

7.1.1 Static Array

A static array is a series of elements of the same data type in contiguous memory locations that
can be individually referenced by adding an index to a unique identifier. A static array can be
declared by specifying the data type of its elements, its name, and its maximum size.

type name [size];

In Example 32, an array that can hold 3 strings is defined and populated.

#tinclude<iostream> // cout, endl
using namespace std;
int main() {

string subjects [3];

subjects[@] = "Economics";
subjects[1] = "Geography";
subjects[2] = "Mathematics";

for (int k = @; k < 3; k++) cout << subjects[k] << endl;

return 9;

}

Economics
Geography
Mathematics

Example 32: Basic Array

27

Note:

Each element in an array can be referenced using a key starting from zero. The First

elementis at 0, the second at 1, and so on.
The size of an array cannot be changed once it has been defined. You need to think

ahead and define an array with the maximum possible size you need.

Like a normal variable, an array can be initialized during its definition as shown in Example 33.

#include<iostream> // cout, endl
using namespace std;

int main() {

string subjects [] = { "Economics", "Geography", "Mathematics" };

for (int k = @; k < 3; k++) cout << subjects[k] << endl;

return 0;

Example 33: Initialize an Array

Also, since C++11, a range-based forloop can be used to simplify accessing an array element as
shown in Example 34.

#include<iostream> // cout, endl
using namespace std;

int main() {

string subjects [] = { "Economics", "Geography", "Mathematics" };
for (auto subject : subjects) cout << subject << endl;

return 9;

Example 34: Accessing Array Elements (C++11 and up)

28

7.1.2 Dynamic Array (a.k.a Vector)

A dynamic array (vector) is an array whose size can be changed after it has been defined. A
vector definition takes the following general form:

vector<type> name;

Example 32 can be re-written using a vector as follows:

#include<iostream> // cout, endl
#include<vector> // vector

using namespace std;

int main() {
vector<string> subjects;
subjects.push_back("Economics");
subjects.push_back("Geography");
subjects.push_back("Mathematics");

for (int k = @; k < subjects.size(); k++) cout << subjects[k] << endl;

return 0;

Example 35: Basic Dynamic Array

In Example 35, size stores the current number of elements that have been stored in the vector.
Elements can be accessed using their positions (starting at 0) like in static arrays.

29

Also, elements in a vector can be accessed using an iterator as shown below.

#include<iostream> // cout, endl
#include<vector> // vector

1

2

3.

4. using namespace std;
5

6. int main() {

7

8

vector<string> subjects;

10. subjects.push_back("Economics");

11. subjects.push_back("Geography");

12. subjects.push_back("Mathematics");

13.

14, vector<string>::iterator it;

15. for (it = subjects.begin(); it != subjects.end(); it++) {

16. cout << *it << endl;

17. }

18.

19. return 0O;

20. }

Example 36: Using iterators in Vectors

Note:

i. subjects.begin() isa pointer to the first element in the vector (the beginning)

ii. subjects.end() is a pointer to the location after the last element in the vector. It

does not point to the last element but to the location after the last element.

iii. Theiterator (it)is a pointer and stores the address of where data is stored in memory.
To retrieve the actual data (Line 76), we need to instruct the compiler by adding an

asterisk (*) before the iterator (it). This is called de-referencing a pointer.

30

Also, since C++11, a vector can be initialized similar to a static array and a range-based forloop
can be used to access elements in a vector. This can simply Example 35 to the following.

#include<iostream> // cout, endl
#include<vector> // vector

using namespace std;

int main() {
vector<string> subjects = { "Economics", "Geography", "Mathematics" };
for (auto subject : subjects) cout << subject << endl;

return 0;

Example 37: Accessing Elements in a Vector (C++11 and up)

Vector includes a handful of other common operations that have been summarized in Table 5.

Table 5: Common Vector Operations

Operation Description
begin () Returns an iterator pointing to the first element in the vector
end () Returns an iterator pointing to the theoretical element that follows the

last element in the vector

Checks whether the vector is empty. Returns trueif the vector is empty,

t !
empty () false otherwise
size () Returns the current number of elements in the vector
Returns the size of the storage space currently allocated to the vector
capacity () expressed as number of elements based on the memory allocated to the

vector

u_n

Resizes the vector so that it contains “n” elements. If the current size of
the vector is greater than nthen the extra elements at the back are
removed from the vector. If the current size is smaller than nthen extra
elements are inserted at the back of the vector

resize (n)

Adds a new element “x” at the end of the vector, after its current last

h back . . . 1 .
push_back (x) element. This effectively increases the container size by one

Removes all elements from the vector (which are destroyed), leaving the

1
clear () vector with a size of 0

Exchanges the contents of one vector with another vector “v” of the

swap (v) same type. Sizes may differ.

31

7.1.3 Stack

A stack is a container that operates with LIFO (Last In First Out) principle. In a stack, the last
element to be added will be the first element that can be retrieved. It is similar to a stack of
plates (Figure 2), new plates are placed on top and the last plate to be added will be the first
to be removed.

Figure 2: Stack of Plates

In C++, a definition of a stack takes the following general form:

stack<type> name;

32

In Example 38, four numbers are added into a numbers stack. Then one by one, the numbers
are removed from the stack and displayed. It can be seen that the order of the displayed
numbers is reversed from the original.

#include<iostream> // cout, endl
#include<stack> // stack

using namespace std;

int main() {
stack<int> numbers;

// Add four numbers
numbers.push(10);
numbers.push(20);
numbers.push(30);
numbers.push(40);

while (numbers.empty() == false) {
cout << numbers.top() << endl; // Display the top element
numbers.pop(); // Remove the top element

}
return 0;
}
40
30
20
10

Example 38: Basic Stack Operations

Standard stack includes a handful of other common operations that have been summarized in
Table 6.

Table 6: Common Stack Operations

Operation Description

enpty () Checks whether the stack is empty. Returns trueif the stack is empty, false
otherwise

size () Returns the current number of elements in the stack

push (x) Adds a new element “x"” at the top of the stack

pop () Deletes the top most element of the stack

top () Returns a reference to the top most element of the stack
Removes all elements from the stack (which are destroyed), leaving the

clear () 3 R
stack with a size of 0

33

Stack Use Case: Balanced Symbols Problem

Understanding the Problem

Balanced symbols problem is a common problem in programing that involves balancing and
nesting different kinds of opening and closing symbols. To simplify the problem, we will
consider only three symbols:

e square brackets: [and]
e curly braces: {and}
e parentheses: (and)

The challenge is to determine whether a given expression such as “[{ () }] ()" is balanced or
not. For instance, the following expressions are all balanced:

o {{(I1ID}O}
o ([OIIDHHIOINO

On the other hand, the following expressions are not balanced:

o ((O])
o (IXH{DHITO}

Consider a balanced expression “[{ () }], suppose we read the expression from left to right,
we can observe that:

e The opening square bracket “[* is the first to be read and its closing square bracket “]”
will be last to be read

e The opening curly brace “{" is the second to be read and its closing curly brace “}” will be
the second last to be read

e The opening parentheses “(“ is the last opening symbol to be read and its closing
parentheses “)"” will be the first closing symbol to be read

Clearly, this is last-in-first-out (LIFO) structure and we can use a stack to solve this problem.

Formulating an Algorithm

Beginning with an empty stack, we can process the expression from left to right. When we
encounter an opening symbol, “[*, “{" or “(“, we push it onto the stack, since its corresponding
closing symbol will appear later if the expression is balanced. When we encounter a closing
symbol, we check if it matches the symbol on top of the stack e.g. “}” matches “{“. If they match,
remove the opening symbol from the top of the stack (i.e. pop the stack) and continue
processing the expression. If they do not match, the expression is not balanced. As long asit is
possible to pop the stack to match every closing symbol, the expression remains balanced. At
the end of the expression, when we have processed all the symbols, if the expression is
balanced, the stack should be empty.

Implementing the Algorithm

We can implement the above algorithm as fFollows.

34

#include<iostream> // cout, endl
#include<stack> // stack

using namespace std;

int main() {
const string EXPRESSION = "([{}I{([DHI{O}IIO";

stack<char> symbols;
bool isBalanced = true;

// Process the expression from left to right
for (int k = @; k < EXPRESSION.size(); k++) {
char ch = EXPRESSION[Kk];

// Push an opening symbol onto the stack

if (ch == "{*" || ch == '"[" || ch == "(') symbols.push(ch);
// Process a closing symbol
else if (ch == '}' || ch == "]" || ch == ")") {
// Check if the closing symbol matches what is on top of the stack
if ((ch == '}' && symbols.top() == '{') ||
(ch == ']" && symbols.top() == '[') ||
(ch == ")"' && symbols.top() == "(")) {
// Remove the top opening symbol since they match
symbols.pop();
} else {

// Mismatching symbols found
isBalanced = false;
break; // No need to continue since a mismatch is already found

}

// Unknown symbol found

else {
cout << "Unknown symbol '" << ch <<
isBalanced = false;
break;

in the expression!" << endl;

}

// A balanced stack leaves an empty stack at the end of the day
if (symbols.size() > @) isBalanced = false;

// Display results
if (isBalanced) cout << "\"" << EXPRESSION << "\" is balanced!" << endl;
else cout << "\"" << EXPRESSION << "\" is NOT balanced!" << endl;

return 9;

}

"L D {0 O™ is balanced!

Example 39: Stack Use Case (Balanced Symbols Problem)

35

7.1.4 Queue

A queue is a container that operates with FIFO (First In First Out) principle. In a queue, the first
element to be added will be the first element that can be retrieved. It is similar to a queue of
people (Figure 3), the first person to arrive will be the first one to be served and an additional
person joins at the back of the queue.

Figure 3: Queue of People

In C++, a definition of a queue takes the following general form:

queue<type> name;

In Example 40, four numbers are added into a queue. Then one by one, the numbers are

retrieved from the queue and displayed. It can be seen that the order of the displayed numbers
is the same as the original.

36

#include<iostream> // cout, endl
#include<queue> // queue

using namespace std;

int main() {
queue<int> numbers;

// Add four numbers
numbers.push(10);
numbers.push(20);
numbers.push(30);
numbers.push(40);

while (numbers.empty() == false) {
cout << numbers.front() << endl; // Display the front element
numbers.pop(); // Remove the front element

}
return 0;
}
10
20
30
40

Example 40: Basic Queue Operations

Standard queue includes a handful of other common operations that have been summarized in
Table 7.

Table 7: Common Queue Operations

Operation Description

Checks whether the queue is empty. Returns trueif the queue is empty,

empty () !
false otherwise

size () Returns the current number of elements in the queue

push (x) Adds a new element “x" at the back of the queue

pop () Deletes the front most element of the queue

front () Returns a reference to the front most element of the queue

clear () Removes all elements from the queue (which are destroyed), leaving the
queue with a size of 0

37

Queue Applications

Queues have extensively been used to solve real-world problems that involve some aspect of
someone/something waiting in line, such as:

i. Key presssequencein a keyboard
ii. Ticketing systems in public service stations where who comes First will be served first
iii. ATM booth line
iv. Printing jobs sent to a printer
v. Jobschedulingin an operating system

38

7.2 Non-Linear Data Structures

A non-linear data structure organizes its elements in a non-sequential manner. For some types
of data, like a set of key and value pairs, organizing the data in non-sequential manner results
in quicker operations like insertion, deletion, and retrieval.

7.2.1 Map

A map is an associative container that stores elements formed by a combination of a key and
its corresponding value. For instance, a map of a student can look like:

“name” : “Alice Bob”
“gender”: “Female”
“form” : “Five”
“stream” : “ECA”

“total exams”: “Five”
“joined” : “2019”

In the above map, the keys are name, gender, form, stream, total exams, and joined. Each key
must be unique and associated with a value. The values can be the same between different keys
(e.g. between form and total exams). All keys should have the same data type, and all values
should have the same data type. The data type of keys and of values can be different.

In C++, a definition of a map takes the following general form:

map<keys-type, values-type> name;

In Example 41, the maps contain a translation of digits between English and Kiswahili as well as
between English words and numbers. The maps can be used to translate a phone number given
in English to Kiswahili and its corresponding digits.

39

#include<iostream> // cout, endl
#include<map> // map

using namespace std;
int main() {

// Build an English to Kiswahili mapping of digits
map<string, string> engToKisw;

engToKisw["zero" = "sifuri";
engToKisw["one" = "moja";
engToKisw["two"] = "mbili";
engToKisw["three"] = "tatu";
engToKisw["four"] = "nne";
engToKisw["five"] = "tano";
engToKisw["six" = "sita";
engToKisw["seven"] = "saba";
engToKisw["eight"] = "nane";
engToKisw["nine" = "tisa";

// Build an English words to numbers mapping of digits
map<string, char> engToNum;

engToNum["zero"] = '@';

engToNum["one" =
engToNum["two"]
engToNum["three"]
engToNum["four"]
engToNum["five"]
engToNum["six"
engToNum["seven"
engToNum["eight"]
engToNum["nine"

1]
LCoOoNOTUVITDE WN R
-

1]
e e G

. e

o onon
e e G

e

// Test the conversions
string digits[] = {
"Zer‘O", "Seven“, "'Five", "'FOUF‘", "tWO",

"four", "zero", "nine", "seven", "six

s

string trans_eng = "";
string trans_kisw = "";
string trans_num = "";

for (int k = @; k < sizeof(digits)/sizeof(string); k++) {
trans_eng += " " + digits[k];
trans_kisw += " " + engToKisw[digits[k]];
trans_num += engToNum[digits[k]];

}

cout << "English:
cout << "Kiswahili:
cout << "Number: "

<< trans_eng << endl;
" << trans_kisw << endl;
<< trans_num << endl;

return 0;

40

English: zero seven five four two four zero nine seven six
Kiswahili: sifuri saba tano nne mbili nne sifuri tisa saba sita
Number: 0754240976

Example 41: Translation Using a Map

Since C++11, the map can easily be initialized during its definition. Example 41 can be re-written
as follows:

41

#include<iostream> // cout, endl
#include<map> // map
#include<vector> // vector

using namespace std;

int main() {
// Build an English to Kiswahili mapping of digits
map<string, string> engToKisw = {
{"zero", "sifuri"}, {"one", "moja"}, {"two", "mbili"},{"three", "tatu"},

{ll_FOur‘IIJ "nne"}, {II_Fivell’ ll,tanoll}’ {Ilsixll, llsitall}, {llsevenll, llsaball}J
{"eight", "nane"}, {"nine", "tisa"}

}s

// Build an English words to numbers mapping of digits

map<string, char> engToNum = {
{llzer\oll, IG'}, {llonell, '1'}, {lltwoll, l2l}J {"thr‘ee", l3l},{ll_Four‘ll, I4I},

{llfivell, IS'}, {IISiXII, I6I}, {llsevenll, '7'},{"eight"’ I8I}J{llninell, I9I}
3
// Test the conversions

vector<string> digits = {
"zero", "seven", "five", "four", "two",

"four", "zero", "nine", "seven", "six
}s
string trans_eng = "";
string trans_kisw = "";
string trans_num = "";

for (int k = @; k < digits.size(); k++) {
trans_eng += " " + digits[k];
trans_kisw += " " + engToKisw[digits[k]];
trans_num += engToNum[digits[k]];

}

cout << "English:
cout << "Kiswahili:
cout << "Number: "

<< trans_eng << endl;
" << trans_kisw << endl;
<< trans_num << endl;

return 0;
English: zero seven five four two four zero nine seven six
Kiswahili: sifuri saba tano nne mbili nne sifuri tisa saba sita

Number: 0754240976

Example 42: Translation Using Map (C++11 and up)

42

7.2.2 Set

A set is a container that stores unique elements following a specific order. All values in a set
must have the same data type. The values in a set cannot be modified, but they can be inserted
or deleted.

In C++, a definition of a set takes the following general form:

set<type> name;

In Example 43, seven combinations are added into a set. Then one by one, the combinations are
retrieved from the set and displayed. It can be seen that this results in a unique and sorted list
of combinations.

#tinclude<iostream> // cout, endl
#tinclude<set> // set

using namespace std;

int main() {

}

set<string> combinations;

combinations.insert("EGM");
combinations.insert("PCM");
combinations.insert("PCB");
combinations.insert("ECA");
combinations.insert("HGL");
combinations.insert("EGM");
combinations.insert("HGL");

cout << "Unique sorted combinations: ";

set<string>::iterator it;

for (it = combinations.begin(); it != combinations.end(); it++) {
cout << *it << " ";

}

return 0;

Unique sorted combinations: ECA EGM HGL PCB PCM

Example 43: Basic Set Operations

Since C++11, set initialization is supported and Example 43 can be written as shown in Example

44,

43

}s

}

int main() {
set<string> combinations = {
IIEGMIIJ IIPCM", IIPCBIIJ IIECA"’ IIHGLII’ "EGM", IIHGLII

cout << "Unique sorted combinations: ";

#include<iostream> // cout, endl
#include<set>

// set

using namespace std;

set<string>::iterator it;

for (it = combinations.begin(); it != combinations.end(); it++) {
cout << *it << " ";

}

return 0;

Unique sorted combinations: ECA EGM HGL PCB PCM

Example 44: Set Operations (C++11 and up)

Standard set includes a handful of other common operations that have been summarized in

Table 8.
Table 8: Common Set Operations
Operation Description
Checks whether the set is empty. Returns trueif the set is empty, false
empty () .
otherwise
size () Returns the current number of elements in the set

insert (x)

Adds a new element “x" into the set (if it does not already exist) and
ensures elements in the set are sorted

erase (x) Removes the element with a value of “x” from the set
find (x) Returns a reference (iterator) to the element with a value of “x”
clear () Removes all elements from the set (which are destroyed), leaving the set

with a size of 0

44

Set Use Case: Intersection of Two Lists

A common problem in programming is to determine the common elements between two lists.
For instance, given a list of all students taking Advanced Mathematics and a list of all students
taking Chemistry, can you generate a list of all students taking both Chemistry and Advanced

Mathematics?

In C++, this can easily be accomplished using set. Other containers can be used as well (like
arrays and vectors) but they will have to be sorted first. Sets are ideal because their elements

are already sorted.

#include<iostream> // cout, endl
#include<algorithm> // set_intersection
#include<set> // set, inserter

using namespace std;

int main() {

}

// Set of students taking Chemistry
set<string> chem = {
"Aidan", "Flora", "Victoria", "Caleb", "Nick", "Diana", "John"

3

// Set of students taking Advanced Mathematics
set<string> math = {
"Jasmin", "Victoria", "Nick", "Aidan", "Latifa", "Rashidi", "Ali"

};

// Generate a set of students taking both subjects

set<string> both;

set_intersection(chem.begin(), chem.end(), math.begin(), math.end(),
inserter(both, both.begin()));

// Display the list of students taking both subjects

cout << "Students taking both subjects: ";

set<string>::iterator it;
for (it = both.begin(); it != both.end(); it++) {

cout << *it <« ;

}

return 9;

Students taking both subjects: Aidan Nick Victoria

Example 45: Set Intersection (C++11 and up)

Note: Sometimes it is critical to allow duplicates in a set. In C++, this can be achieved using a
multiset. Multiset operations are similar to that of a set. A multiset can be defined as:

multiset<type> name;

45

7.2.3 Priority Queue

A priority queue is a container that organizes its elements in such a way that its first element
is always the greatest of all the elements it contains.

In C++, a definition of a priority queue takes the following general form:

queue<type> name;

In Example 46, three numbers are added into a priority queue. At this point, 30 will be the top
number. Then, 40 is added into the priority queue, making it the new top number. Then, the top
number is removed from the priority queue, making 30 the new top number.

#tinclude<iostream> // cout, endl
#include<queue> // priority_queue

using namespace std;

int main() {
priority_queue<int> numbers;

numbers.push(10);
numbers.push(30);
numbers.push(20);

cout << "Front number: << numbers.top() << endl;
numbers.push(40);

cout << "Front after adding 40: " << numbers.top() << endl;
numbers.pop();

cout << "Front after removing the top number: << numbers.top() << endl;

return 0;

Front number: 30
Front after adding 40: 40
Front after removing the top number: 30

Example 46: Priority Queue in Action

Standard queue includes a handful of other common operations that have been summarized in
Table 9.

Table 9: Common Priority Queue Operations

Operation Description

Checks whether the priority queue is empty. Returns trueif the priority

t : i
empty () queue is empty, false otherwise

46

size () Returns the current number of elements in the priority queue
Adds a new element “x" into the priority queue. If this is the largest
push (x) . .
element, it will also become the top element
pop () Deletes the largest value from the priority queue
top () Returns a reference to the largest element in the priority queue

Priority Queue Applications

Priority queues are extensively used in the implementation of algorithms, such as:

i.
ii.
iii.
iv.
V.

Dijkstra’s shortest path algorithm

Prim’s algorithm

A* search algorithm

Huffman codes for data compression

Load balancing and interrupt handling in operating systems

47

8 Data Streams

8.1 Standard Input and Output Streams

So far, we have been creating programs that take input from the keyboard and display output
on the console screen. We have used the inbuilt cin and cout provided by the iostream
standard library to read user input from the keyboard and write output on the console screen
respectively (Figure 4).

o0o0000
000000 | —@E— Program —@EIEN—
[n | e— s | Input Output i
Stream Stream
Keyboard Screen

Figure 4: Default Standard Input and Output Streams

cin and cout are examples of streams. A stream provides a data transfer connection between
our program and a data object like a file, keyboard, or a console screen. If a stream allows data
to flow from a data object (keyboard, file) into our program, we call it an input stream (e.q. cin).
On the other hand, if a stream allows data to flow from our program into a data object (console
screen, file), we call it an output stream (e.g. cout).

cinis an in-built input stream that by default is hooked to the keyboard. Hence, we can use cin
in its default configuration to input data from a keyboard into our program.

coutis an in-built output stream that by default is hooked to the console screen. Hence, we can
use cout in its default configuration to output data from our program to the console screen.

In Example 47 below, you can notice that “>>" and “<<" operators point in the direction of data
flow. For instance, in Line 6, data ("Enter your name: ") flows from our program to the cout
stream (and eventually to the console screen). In Line 8, data (whatever the user will input as
the name) flows from the cin stream into our program and gets stored inside name. The same
data stored in name will be part of the data that flows out of our program to the cout stream in
Line 10.

48

1. #include<iostream> // cout, cin, endl
2o

3. using namespace std;

4.

5. int main() {

6. cout << "Enter your name: ";

7. string name;

8. cin >> name;

9.

10. cout << "Thank you " << name << "!" << endl;
11.

12. return 0;

13.}

Enter your name: Alice
Thank you Alice!

Example 47: Default Standard Input and Output Streams

8.2 Redirecting the Standard Input and Output

As demonstrated in Section 8.1, by default cin is hooked to the keyboard and cout is hooked to
the console screen. C++ includes the ability to redefine what cin and cout are hooked to.
Usually, cin and cout are redefined to point to text files.

— | EEI—>| Program | — AN

a—— Input Output —
Stream Stream

<input file> <output file>

Figure 5: Redefined Standard Input and Output Streams

Before executing Example 48, create a text file called “data.txt"” in the same location where
the program source file is located. Add your name, save, and close the file. If the program is
now compiled and executed, nothing will appear on the console screen. This is because all the
output data will be saved in a file called “output.txt”.

Notice that the program (Lines 14 to 19) did not change after we redirected the standard input
and standard output streams. Also, you can decide to just redirect a single standard stream (cin
only or cout only). Forinstance, if you comment out Line 71, the name will still be Fetched from
the “data.txt” file but the output will be displayed on the console screen.

49

Alice

Input File

coNOOUVT A WNBR

(o]

.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.}

#include<iostream>» // cout, cin, endl
#include<cstdio> // freopen, stdin, stdout

using namespace std;

int main() {

// Redefine the standard input to point to our own file
freopen("data.txt", "r", stdin);

// Redefine the standard output to point to our own file

freopen("output.txt", "w", stdout);
//cout << "Enter your name: ";
string name;
cin >> name;

cout << "Thank you " << name << "!" << endl;

return 0O;

Thank you Alice!

Output File

Example 48: Redirected Standard Input and Output Streams

8.3 User Defined Input and Output Streams

What if we want to get some of the data from the keyboard and some of the data from a file at
the same time. What if we want to save some outputinto a file and display some output on the

console screen?

We can leave cin and cout in their default configurations (hooked to the keyboard and console
screen respectively) and define our own input and output streams that point to our desired
files. This can enable us to interact with files as well as the keyboard and console screen at the

same time (Figure 6).

50

oooooo
000000 —EEIN— — S —
ocC—30 Input Output
Stream Stream
Keyboard Screen
Program

— | EHE— — N —
— ——
Input Output
Stream Stream
<input file> <output file>

Figure 6: User Defined Input and Output Streams

In Example 49, Line 9 defines our custom input stream called “inFile” and bind it to
“country.txt” file. This file should exist before compiling and executing the example. Hence,
create the text file and add your country, save, and close the file.

Line 12 defines our custom output stream called “outFile” and bind it to “results.txt”. This
file will be created when the program is executed. If a file with the same filename exists, its
data will be overwritten.

inFile and outFile are the variables that reference the streams we have created. You can
assign any names to the custom streams like any other variable.

Lines 21 & 28 show how the streams can be used. As we can see, inFile and outFile can be
used similar to cin and cout respectively.

Lines 31 & 32 close the two streams we have created. It is the best practice to close the
resources we have created once we are done using them.

Once the program is executed, we can see that it fetches some data from the file and requests
some from the user. Also, it displays some output on the console screen and save some data in
aresults file.

51

Tanzania

Input File

LCoOoONOTUVID WNER

38.
39.}

. #include<iostream> // cout, cin, endl

. #include<cstdio> // freopen, stdin, stdout
. #include<fstream> // ifstream, ofstream
using namespace std;

int main() {

// Define an input file stream and bind it to our own file
ifstream inFile("country.txt");

// Define an output file stream and bind it to our own file
ofstream outFile("results.txt");

// Request for a user's name
cout << "Enter your name: ";
string name;

cin >> name;

// Extract the country from the file
string country;

if (inFile.is_open()) { // Check if the file was opened successfully

inFile >> country;
} else {
country = "N/A"; // Set a default country value

}

// Display results to the console screen
cout << "Thank you << name << " from "
cout << "This message is also saved in \"results.txt\

// Save the same results into a file
outFile << "Thank you " << name << " from

<< country << "
// Close the streams we defined

inFile.close();

outFile.close();

return 0;

<< country << "!"<< endl;
<< endl;

1"<< endl;

Console Screen

Enter your name: Alice
Thank you Alice from Tanzania!
This message is also saved in "results.txt"

Output File

Thank you Alice from Tanzania!

Example 49: User Defined Input and Output Streams

52

8.4 String Streams

A string stream provides a stream that we can put data into as if it were an output stream like
cout and we can read from it as if it were an input stream like cin.

Program
stream

Figure 7: String Stream

From Figure 7, we can see that we can add data into a string stream and read from the front of
a string stream. This provides a strong method to parse user input or manipulate data between
different data types as shown in the following examples.

coONOUVTHA WNBR

19.
20. }

#include<iostream>» // cout, cin, endl
#include<sstream> // stringstream

using namespace std;

int main() {

// Create a string stream from string data
stringstream ss("Alice 19");

// Read data from the string stream
string name;
Ss >> name;

int age;
ss >> age;

cout << name << is << age <<

years old!" << endl;

return 0;

Alice is 19 years old!

Example 50: String Stream

In Example 50, a string stream “ss” is created with initial data “Alice 19" in Line 8. The data
contained in “ss" can be read just as we have been reading data from cin as shown in Lines 712

& 15.

53

A common use of a string stream is to convert between different data types. In Example 51, we
try to convert two strings (cleanData and dirtData) to integers. An attempt is made to
convert each string (Lines 16 & 27), then the status of the string stream is checked (Lines 18 &
29) to determine if the conversion was successful or not. As shown in Section 9.2, this technique
can be used to guard a program from crashing when a user supplies an invalid input.

1. #include<iostream>» // cout, cin, endl

2. #include<sstream> // stringstream

3.

4. using namespace std;

5.

6. int main() {

7. string cleanData = "538";

8. string dirtData = "WB78";

9.

10. stringstream ss; // Create an empty string stream

11.

12. int num;

13.

14. // Attempt to convert clean data to a number

15. ss << cleanData; // Add clean string data into the stream
16. SS >> num; // Try to read data from the stream as an integer
17.

18. if (ss.fail()) { // Check if stream was read successfully

19. cout << "Error converting " << cleanData << " to integer!" << endl;
20. } else {

21. cout << num << " was read successfully!" << endl;

22. }

23.

24. // Attempt to convert dirt data to a number

25. ss.str(""); // Clear the contents of the stream (if any)

26. ss.clear(); // Reset any errors in the stream

27.

28. ss << dirtData; // Add dirt string data into the stream

29. SS >> num; // Try to read data from the stream as an integer
30.

31. if (ss.fail()) { // Check if stream was read successfully

32. cout << "Error converting \"" << dirtData << "\" to integer!" << endl;
33. } else {

34. cout << num << " was read successfully!" << endl;

35. }

36.

37. return 0;

38.}

538 was read successfully!

Error converting "WB78" to integer!

Example 51: Data Conversion Using String Streams

Note: In Example 51, at any time, we can get all the contents currently in the stream using:

string allStreamData = ss.str();

54

9 Guarding Against User Input

Murphy’s law states that “Things will go wrong in any given situation, if you give them a chance”.
Hard-drives can crash, power can go off, user can enter the wrong input, and so on. All such
factors can prevent programs we write from running in the way we intend them to run. Some
of those factors are always beyond the ability of a programmer to address (like power going
off). However, we can prevent our programs from crashing by anticipating what can go wrong
when we write our code, especially in handling data. We can minimize what can go wrong when
our program is executed.

9.1 Anticipating Exceptional Cases

Consider the code in Example 52. The program asks the user to enter two integers and
computes the quotient when the first is divided by the second. We expect the user to enter
numbers like 24 and 6 (first case). However, a user can enter zero as the second number (second
case). This is problematic because dividing an integer by zero is undefined in Mathematics and
results into an undefined behavior in C++. Like in the second case of output, entering 24 and 0
will crash the program.

#include<iostream> // cout, cin, endl
using namespace std;

int main() {
// Request two integers from the user
cout << "Enter two integers: ";
int a, b;
cin >> a >> b;

cout << a << " divide by " << b <« is << a / b << endl;

return 0;

}

Enter two integers: 24 6
24 divide by 6 is 4

Enter two numbers: 24 0

Example 52: Division Problem

Hence, during programming, one of critical task is to think about such exceptional cases and
write our code in such a way that we protect the program from crashing when such extreme
cases are encountered. From Example 52, we can simply check if the second number is zero
before dividing the two numbers. If the user entered zero as the second number, we can alert
the user that the second nhumber cannot be zero or decide another course of action.

55

9.2 Handling Invalid User Input

We all know such people. The program asks for their age, they enter their name. Semetimes
Most of the time, users make mistakes. It is our duty as programmers to help users achieve their
goals despite the mistakes they make. We have all used the “undo” button.

Consider the following program (Example 53). Suppose a user accidentally types “B21" instead
of “21", the program will provide a wrong feedback to the user (Garbage In, Garbage Out). How
can we protect the user against such a mistake?

#include<iostream> // cout, cin, endl
using namespace std;

int main() {
cout << "Enter your age: ";
int age;
cin >> age;

if (age > 18) cout << "You can vote!" << endl;
else cout << "You can start voting after " << 18 - age << " years!\n";

return 9;

}

Enter your age: B21
You can start voting after 18 years!

Example 53: Wrong User Input

One solution is to check if the process of reading the input was successful. This can be done by
inspecting the input stream (cin) for a failure. Example 53 can be updated as follows.

56

int main() {

int age;

} else {

cout << "Enter your age: ";

cin >> age;

#include<iostream>» // cout, cin, endl

using namespace std;

if (cin.fail()) { // Check if reading an integer was successful
cout << "Invalid input!" << endl;

if (age > 18) cout << "You can vote!" << endl;
else cout << "You can start voting after

<< 18 - age << " years!\n";

You can vote!

}
return 0;
}
Enter your age: B21
Invalid input!
Enter your age: 21

Example 54: Guarding Against Wrong User Input

Another solution is to always receive user input as string. Then inspect the input to see if it is
what was expected and act accordingly after that. Example 53 can be re-written as shown in

Example 55.

57

#include<iostream> // cout, cin, endl, atoi, isdigit
using namespace std;

int main() {
// Grab user input as text
cout << "Enter your age: ";
string input;
cin >> input;

// Inspect if the input is valid (in our case: contains only digits)
bool isValidInput = true;
for (int k = @; k < input.size(); k++) {
if (isdigit(input[k]) == false) {
isValidInput = false;
break;

}

// Take right action depending on input status
if (isValidInput) {
int age = atoi(input.c_str()); // Convert input to a number

if (age > 18) cout << "You can vote!" << endl;
else cout << "You can start voting after " << 18 - age <«
} else {
cout << "\"" << input << "\" is invalid.
<< "Age should be a positive number!\n";

years!\n";

}

return 0;

}

Enter your age: 21B
"21B" is invalid. Age should be a positive number!

Enter your age: 21
You can vote!

Enter your age: 7
You can start voting after 11 years!

Example 55: Guarding and Inspecting Wrong User Input

58

9.3 Handling Long String Input

The program in Example 56 asks the user to enter his/her full name (first name and last name).
If we read the full name as we usually do, only the first name will be captured.

#include<iostream>» // cout, cin, endl
using namespace std;

int main() {
cout << "Enter your full name: ";
string fullName;
cin >> fullName;

cout << "Welcome << fullName << "!" << endl;

return 0;

}

Enter your full name: Alice Bakara Charles
Welcome Alice!

Example 56: Reading String Containing Space (Problem)

This can easily be overcome by using getline() function as follows.

#include<iostream> // cout, cin, endl, getline
using namespace std;

int main() {
cout << "Enter your full name: ";
string fullName;
getline(cin, fullName);

cout << "Welcome << fullName << "!" << endl;

return 0;

}

Enter your full name: Alice Baraka Charles
Welcome Alice Baraka Charles!

Example 57: Reading String Containing Space (Solution)

9.4 Ignoring User Input

Sometimes the user input or data source contains more data than we may need. Suppose the
user always enters a phone number containing the Tanzanian country code (e.g.
+255756123456), but our program needs the number without the country code (e.g.
0756123456). One solution is to ignore the segment of the phone that we do not need when
we are capturing the phone number into our program as shown below.

59

#include<iostream> // cout, endl
using namespace std;

int main() {
cout << "Enter your phone number (+255XXXXXXXXX): ";

string number;

cin.ignore(4); // Ignore the first four characters
cin >> number; // Grab the rest of the number
number = "@" + number; // Add the leading zero

cout << "Your number is: << number << endl;

return 9;

}

Enter your phone number (+255XXXXXXXXX): +255787123456
Your number is: 0787123456

Example 58: Ignoring User Input

Also, ignore() can specify a terminating character. For instance, Example 59 asks to skip the
next 10 characters or until a hyphen (-)is found in the userinput, whatever that comes first.

#include<iostream> // cout, cin, endl
using namespace std;

int main() {
cout << "Enter your name: ";

string name;
cin.ignore(10, '-'); // Ignore the first 10 characters or until ‘- is read
cin >> name;

cout << name << endl;

return 0;

}

Enter your name: Alice-Bob-Charles
Bob-Charles

Example 59: Ignoring User Input Until a Character

*** The End of Practical Guideline 1 ***

60

