

Practical Guideline 1

Programming and Data Structures in C++

Version 1.0

Last Update: November 2019

ii

Copyright

© STEM Loyola 2019. All Rights Reserved.

No part of this guideline may be reproduced or transmitted in any form or by any means,

electronically or mechanically, including photocopying, scanning, uploading to any information

storage and retrieval system without prior written approval of STEM Loyola from Loyola High

School, Dar es Salaam, Tanzania.

This guideline is part of our practical guidelines series that includes:

• Practical Guideline 1: Programming and Data Structures in C++ (2019)

• Practical Guideline 2: Algorithms and Problem Solving in C++ (2020)

Connect with STEM Loyola:

• Main website: https://www.stemloyola.org

• Programming Challenges: https://challenges.stemloyola.org

• Email: stemloyola@gmail.com

• Twitter: @stemloyolatz (https://twitter.com/STEMLoyolaTZ)

• Instagram: @stemloyolatz (https://www.instagram.com/stemloyolatz)

• GitHub: @stemloyolatz (https://github.com/stemloyolatz)

https://www.stemloyola.org/
https://www.stemloyola.org/
https://challenges.stemloyola.org/
https://challenges.stemloyola.org/
mailto:stemloyola@gmail.com
mailto:stemloyola@gmail.com
https://twitter.com/STEMLoyolaTZ
https://twitter.com/STEMLoyolaTZ
https://www.instagram.com/stemloyolatz
https://www.instagram.com/stemloyolatz
https://github.com/stemloyolatz
https://github.com/stemloyolatz

iii

Contents

Copyright ... ii

Contents ... iii

Dedication ... v

Acknowledgement ... vi

List of Examples ... vii

List of Figures .. viii

List of Tables ... viii

1 Introduction ... 1

1.1 Guideline Objective ... 1

1.2 What is Programming? .. 1

1.3 Programming Languages ... 1

1.4 Integrated Development Environment (IDE) .. 2

2 C++ Basics ... 3

2.1 Background ... 3

2.2 Program Entry Point .. 4

2.3 Header Files .. 4

2.4 Comments ... 5

2.5 Source Code Structure .. 6

3 Basic Data Types (Primitive Data Structures) .. 8

3.1 Whole Numbers (Integers) ... 9

3.2 Decimal Numbers (Real Numbers) .. 9

3.3 Single Characters ...10

3.4 String (Words and Text) ..11

3.5 Automatic Data Type (C++11 and up) ..12

4 Basic Operators ...13

4.1 Maths Operations ..13

4.2 Comparison ...13

5 Program Control ...14

5.1 If…Else...14

5.2 Switch...17

6 Repetition ...18

6.1 While Loop ..18

iv

6.2 Do…while Loop ..21

6.3 For Loop ..21

6.4 Range-Based For Loop (C++11 and up) ..23

6.5 Nested Loops ..24

6.6 Break and Continue ...26

7 Data Structures ...27

7.1 Linear Data Structures ..27

7.1.1 Static Array ..27

7.1.2 Dynamic Array (a.k.a Vector)..29

7.1.3 Stack ...32

7.1.4 Queue ..36

7.2 Non-Linear Data Structures ...39

7.2.1 Map ...39

7.2.2 Set ...43

7.2.3 Priority Queue ..46

8 Data Streams ...48

8.1 Standard Input and Output Streams ..48

8.2 Redirecting the Standard Input and Output ...49

8.3 User Defined Input and Output Streams ...50

8.4 String Streams ..53

9 Guarding Against User Input ...55

9.1 Anticipating Exceptional Cases ...55

9.2 Handling Invalid User Input ..56

9.3 Handling Long String Input ..59

9.4 Ignoring User Input ..59

v

Dedication

This guideline is dedicated to all men and women who strive to live for others.

vi

Acknowledgement

This programming guideline is a living document that receives regular updates. STEM Loyola is

grateful to the following individuals for their efforts and various contributions in compiling and

reviewing this guideline. In alphabetical order of first names, STEM Loyola thanks:

Content Writers:

1. Francis Sowani (Loyola Form Six Class of 2010, B.Sc. Computer Engineering)

2. Lidunda Moyo (Loyola Form Four Class of 2007, B.Sc. Electrical & Computer Engineering)

3. Victor Sowani (Loyola Form Six Class of 2015, B. Sc. Computer Science & Engineering)

Reviewers:

1. Alvin Mrema (Loyola Form Six Class of 2018)

2. Berwin Sengo (Loyola Form Six Class of 2010, B.Sc. Computer Science)

3. Nathaniel Mwaipopo (Loyola Form Six Class of 2019)

4. Vedastus Watosha (Loyola Form Six Class of 2019)

vii

List of Examples

Example 1: Binary Code .. 1
Example 2: Shortest C++ Code .. 4
Example 3: Hello World! ... 4
Example 4: Hello World with STD Namespace ... 5
Example 5: Comments .. 5
Example 6: Badly Structured Source Code .. 6
Example 7: Badly Commented Source Code ... 7
Example 8: Well Structured and Commented Source Code ... 7
Example 9: Storing Whole Numbers ... 9
Example 10: Storing Decimal Numbers..10
Example 11: Storing Single Characters ..10
Example 12: Storing Words/Text ..11
Example 13: Automatic Data Type ...12
Example 14: Basic If Statement ...14
Example 15: Compound If Statement ..15
Example 16: Shorthand If...Else (Ternary Operator) ..16
Example 17: Ternary Operator in Action ...16
Example 18: Switch...Case in Action ...17
Example 19: While Loop ...18
Example 20: Non-Executed Body of While Loop ..19
Example 21: Infinite While Loop ...19
Example 22: Non-Zero as True and Zero as False...20
Example 23: Do...While ...21
Example 24: For Loop ..22
Example 25: Infinite For Loop ..22
Example 26: Initializing Multiple Variables in For Loop ..23
Example 27: Range-based For Loop (C++11 and up) ...23
Example 28: Generating a Diamond Shape ...24
Example 29: Generating Multiplication Table ..25
Example 30: Continue Next Iteration ...26
Example 31: Break a Loop ..26
Example 32: Basic Array ..27
Example 33: Initialize an Array ..28
Example 34: Accessing Array Elements (C++11 and up) ...28
Example 35: Basic Dynamic Array ...29
Example 36: Using iterators in Vectors ..30
Example 37: Accessing Elements in a Vector (C++11 and up) ..31
Example 38: Basic Stack Operations ..33
Example 39: Stack Use Case (Balanced Symbols Problem) ..35
Example 40: Basic Queue Operations ..37
Example 41: Translation Using a Map ..41
Example 42: Translation Using Map (C++11 and up) ...42
Example 43: Basic Set Operations ..43
Example 44: Set Operations (C++11 and up) ...44
Example 45: Set Intersection (C++11 and up) ...45

viii

Example 46: Priority Queue in Action ..46
Example 47: Default Standard Input and Output Streams ...49
Example 48: Redirected Standard Input and Output Streams ..50
Example 49: User Defined Input and Output Streams ..52
Example 50: String Stream ...53
Example 51: Data Conversion Using String Streams ...54
Example 52: Division Problem ...55
Example 53: Wrong User Input ..56
Example 54: Guarding Against Wrong User Input ..57
Example 55: Guarding and Inspecting Wrong User Input ...58
Example 56: Reading String Containing Space (Problem) ..59
Example 57: Reading String Containing Space (Solution) ..59
Example 58: Ignoring User Input ...60
Example 59: Ignoring User Input Until a Character..60

List of Figures

Figure 1: Selecting C++ version in CodeBlocks ... 3
Figure 2: Stack of Plates ...32
Figure 3: Queue of People ...36
Figure 4: Default Standard Input and Output Streams ...48
Figure 5: Redefined Standard Input and Output Streams ..49
Figure 6: User Defined Input and Output Streams ..51
Figure 7: String Stream ...53

List of Tables

Table 1: Common C++ Header Files .. 4
Table 2: Basic Data Types in C++ ... 8
Table 3: Supported Basic Operations ...13
Table 4: Comparison/Logical Operators ..13
Table 5: Common Vector Operations ...31
Table 6: Common Stack Operations ...33
Table 7: Common Queue Operations ...37
Table 8: Common Set Operations ...44
Table 9: Common Priority Queue Operations ..46

1

1 Introduction

1.1 Guideline Objective

This document is a concise guideline to help you understand key concepts in programming.

Priority has been given to those concepts that are critical to helping you gain vital skills and

become competitive in STEM Loyola Programming Challenges and related programming

contests.

1.2 What is Programming?

This guideline is about programming. Put simply, programming is an act of instructing

computers to carry out tasks or actions. Programming is often referred to as coding. A person

who writes the instructions is called a programmer (also known as a coder or a software

developer). A complete set of instructions that a computer can execute is called a program (also

known as code, application, or app). When a computer performs the tasks/actions contained in

a program, we call this executing or running the program.

1.3 Programming Languages

Computers can understand only one language called machine language. English has 26 letters

in its alphabet, but machine language has only two letters: one (1) and zero (0). In programming,

we call these two letters as binary digits or bits in short. When instructions are written in

machine language, the resulting code is called machine code. Below is an example of machine

code for the words “Hello World”.

Example 1: Binary Code

A language like this that one can use to instruct computers is called a programming language.

Machine language is an example of a low-level programming language. It is called low-level

because the instructions need little or no translation before a computer can understand.

Assembly language is another kind of low-level programming language. Assembly code needs

to be translated to machine code before computers can execute. As you may have guessed,

writing instructions in machine language is not ideal for us.

There are programming languages that are closer to human languages like English. These are

called high-level programming languages. Examples include C, C++, Python, Java, JavaScript,

PHP, and Visual Basic. In this guideline, we will only use C++.

When a program is written using a high-level programming language, it has to be translated to

a machine language before it can be executed by a computer. This process is called compiling

or interpreting. Programs that can perform the translations are called compilers or interpreters

01001000 01100101 01101100 01101100 01101111 00100000 01010111 01101111

01110010 01101100 01100100

2

respectively. Interpreting involves translating and executing one instruction at a time. On the

other hand, compiling involves translating all the instructions before a single one can be

executed. Programming languages that support interpreting are like PHP, JavaScript, and

Python. Those that support compiling are like C, C++, Java and Visual Basic.

1.4 Integrated Development Environment (IDE)

An Integrated Development Environment (IDE) is an application that contains all the necessary

tools required to write and test code effectively. Simply, it is the application that you will need

to create, test, and run your programs.

For C++, we recommend CodeBlocks. You can download CodeBlocks from the official website

at https://www.codeblocks.org/downloads/26. A walkthrough tutorial is available from the

official STEM Loyola YouTube channel at https://youtu.be/AQOOqgn6IpQ. The video will walk

you through downloading, installing, and setting up CodeBlocks in Windows.

Visit https://challenges.stemloyola.org/article/recommended-ides for a comprehensive list of

IDEs we recommend for other programming languages like Python, Java, and JavaScript.

https://www.codeblocks.org/downloads/26
https://youtu.be/AQOOqgn6IpQ
https://challenges.stemloyola.org/article/recommended-ides

3

2 C++ Basics

2.1 Background

C++ is a programming language developed in 1980 by Bjarne Stroustrup at the Bell Telephone

Laboratories in the United States. C++ is an enhanced form of another programming language

called C. C++ is an object-oriented programming (OOP) language, which follows OOP concepts

like inheritance, encapsulation, abstraction, and polymorphism.

Like most other programming languages, C++ comes in many versions. Newer versions bring

improvements as well as remove or add new features to the language. C++ has the following

standard versions:

• C++98 is the first edition (1998)

• C++03 is the second edition (2003)

• C++11 is the third edition (2011)

• C++14 is the fourth edition (2014)

• C++17 is the fifth edition (2017)

Currently, C++ Standards Committee is responsible for C++ releases and has currently fixed a

three-year release cycle. As of 2019, the next version (C++20) is currently under preparations.

Important:

• Please confirm the C++ version that will be used for your NECTA practical exams ahead

of time. It is probably the second edition (C++03).

• When you install CodeBlocks, by default it selects the second edition (2003) of C++. If

you use features introduced in C++11 and above, you will have to explicitly select the

desired C++ version. From Settings section, go to Compiler… and check the box

corresponding to the desired C++ version as shown in the figure below for C++11.

Figure 1: Selecting C++ version in CodeBlocks

4

2.2 Program Entry Point

In writing a C++ program, the first instruction to be executed will be the first instruction inside

the main function. The following is the simplest way to define the main function, and also the

smallest C++ code you can write. The code does not contain any instructions and hence, does

nothing.

Example 2: Shortest C++ Code

2.3 Header Files

C++ includes many built-in instructions that we can re-use to write our own instructions. These

built-in instructions are collected in special files called header files. The following table

describes some common header files in C++.

Table 1: Common C++ Header Files

Header File Description

iostream
Support for data input from the standard input (keyboard) and data
output to standard output (console screen)

fstream Support for reading and writing data to and from files

iomanip
Support for formatting data during data input/output e.g. setting how
many decimal places should be displayed

string Support for manipulating text

cmath Support for mathematics operations

limits Support for defined limits like what is the largest supported integer value

algorithm Support for common algorithms like sorting

In C++, you can inform a compiler that you want to use a particular header file using the

include keyword. The following program displays “Hello World!” to the console screen using

the cout keyword. endl keyword ensures that the words are written on their own line.

Example 3: Hello World!

Inside a header file, it is common to group similar instructions. In C++, we call such groups as

namespaces. cout and endl belong to a group/namespace called std (i.e. standard namespace).

main(){ }

#include<iostream> // cout, endl

int main() {
 std::cout << "Hello World!" << std::endl;

 return 0;
}

5

We can avoid having to write the group/namespace over and over again by specifying to the

compiler the default namespace to look into. The above program can be re-written as follows.

Example 4: Hello World with STD Namespace

2.4 Comments

Comments are part of your program that you want a compiler to ignore. It is a good practice to

add comments throughout your program code to describe what different parts are doing. This

is useful when you work with others or for your own future reference. You can specify a

comment using either // or /* */. Below is the Example 4 re-written with comments.

Example 5: Comments

Note:

• // can only be used for a single line comment

• /* */ can be used for both single line and multiple line comments

#include<iostream> // cout, endl

using namespace std;

int main() {
 cout << "Hello World!" << endl;

 return 0;
}

/*
 Author: STEM Loyola
 Year: 2019
*/

#include<iostream> // cout, endl

using namespace std;

int main() {
 // Greet the world
 cout << "Hello World!" << endl;

 return 0;
}

6

2.5 Source Code Structure

You may have noticed that in the examples provided so far, each instruction is written in its

own line. Sometimes an empty line is included between instructions. Also, lines inside the

main() begin with space. First of all, the action of adding space at the beginning of some lines

is called indentation. It is used to mark a group of instructions belonging to the same block. This

is not needed by the compiler, but it helps other programmers or yourself to read/understand

the source code quicker.

C++ compiler ignores any space between different instructions. Actually, different instructions

can be written on the same line or a single instruction can span different lines. Also, C++ permits

empty statements (i.e. statements that just have the semicolon) like Line 6 in Example 6.

Multiple statements can be grouped using curly braces, { }. Usually, this is done to group

statements executed under structures like functions, if…else, and loops. However,

unnecessary grouping can lead to hard-to-read source code (like in lines 10 and 15 in Example

6). Below is a badly structured C++ code but it is valid nonetheless.

Example 6: Badly Structured Source Code

Making matters worse. Comments can be added at almost any part of the code. When we say,

“at almost any part”, we really mean at almost any part! Below is a poorly commented code, but

again, it is still a valid C++ code.

#include<iostream > // cout, endl

using namespace

std;
;
int
main(

) { {{{cout
<< "Please don't write your code like this!"
 <<
 endl
;}}
}cout << "Please don't!" << endl;;; {{return 0;}} }

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.

18.

7

Example 7: Badly Commented Source Code

Compare the above two examples with the one below which showcases a well written and

commented source code. Hence, it is not enough to write valid code, but you should strive to

write well-structured and appropriately commented code, that is not only easier to

understand but also beautiful to look at.

Example 8: Well Structured and Commented Source Code

#include /* one */ <iostream> // cout, endl

using /* two */ namespace std;

int /* three */ main(/* four */) {
 cout << /* five */ "Please don't write your code like this!" << endl;
 cout << "Please don't!" << endl;
 ; /* these are two useless empty statements */ ;
 return /* six */ 0;
}

#include <iostream> // cout, endl

using namespace std;

int main() {
 // Display a message
 cout << "Please write your code like this!" << endl;
 cout << "Please!" << endl;

 return 0;
}

8

3 Basic Data Types (Primitive Data Structures)

Programs process different kinds of data such as whole numbers, decimal numbers, text,

images, sounds, and videos. Before programs can process such data, the data needs to be

stored in memory using structures called variables. Variables contain an address of the location

in memory where a particular data is located.

In a program, we can define a variable by stating two things:

i. name: the label that we will use inside our program to refer to the variable

ii. data type: the type of data that a variable will store. This information is used by a

compiler to determine how much space in memory should be set aside for the variable.

The following table summarizes the basic data types in C++.

Table 2: Basic Data Types in C++

Category Data Type C++ Keyword Description

Whole
numbers

Small integers short int Integers between -32,767 and 32,767

Normal integers int
Integers between -2,147,483,648 to
2,147,483,647

Large integers long long int

Integers between

-9,223,372,036,854,775,808 and
9,223,372,036,854,775,807

Decimal
Numbers

Single precision
decimal numbers

float

Can accommodate seven digits. Its
range is approximately 1.5 𝑥10−45 to
3.4 𝑥1038

Double precision
decimal numbers

double

Can accommodate 15 to 16 digits,
with a range of approximately

5.0 𝑥10−345 to 1.7 𝑥10308

Characters ASCII characters char
Individual letters, numbers, and
symbols

Text String string
Text such as words, sentences,
paragraphs, etc.

Logical
values

Boolean bool
Stores the two logical values: true or
false

Nothing No data type void

Is used in some cases such as
functions to indicate that no values
will be passed into or returned from
the function

The above data types can be used to store data as follows:

9

3.1 Whole Numbers (Integers)

Example 9: Storing Whole Numbers

3.2 Decimal Numbers (Real Numbers)

#include<iostream> // cout, cin, endl

using namespace std;

int main() {
 // Request and display the user's age
 cout << "Enter your age: ";

 int age;
 cin >> age;

 cout << "You are " << age << " years old!" << endl;

 return 0;
}

Enter your age: 19

You are 19 years old!

#include<iostream> // cout, endl
#include<iomanip> // setprecision

using namespace std;

int main() {
 // Displaying the value of PI in single precision
 // (Reliable to 7 decimal places)
 float pi_s = 3.141592653589793238462643383279;
 cout << "SINGLE PRECISION:" << endl;
 cout << "Default decimal places: Pi = " << pi_s << endl;
 cout << "20 decimal places: Pi = " << setprecision(20) << pi_s << endl;

 // Displaying the value of PI in double precision
 // (Reliable to 15 or 16 decimal places)
 double pi_d = 3.141592653589793238462643383279;
 cout << "DOUBLE PRECISION:" << endl;
 cout << "20 decimal places: Pi = " << setprecision(20) << pi_d << endl;

 return 0;
}

SINGLE PRECISION:

Default decimal places: Pi = 3.14159

20 decimal places: Pi = 3.1415927410125732422

DOUBLE PRECISION:

20 decimal places: Pi = 3.141592653589793116

10

Example 10: Storing Decimal Numbers

When the output of the above program (second box) is inspected, it can be seen that using

float, the value of Pi is correctly captured to about seven decimal places. When using double,

the value is correctly captured to about 15 or 16 decimal places. This is critical to remember

when dealing with real numbers.

3.3 Single Characters

Example 11: Storing Single Characters

#include<iostream> // cout, endl

using namespace std;

int main() {
 char physics_grade = 'A';
 char maths_grade = 'B';

 cout << "Physics: " << physics_grade << endl;
 cout << "Maths: " << maths_grade << endl;

 return 0;
}

 Physics: A

Maths: B

11

3.4 String (Words and Text)

Example 12: Storing Words/Text

Note: Please refer to section 9.3 Handling Long String Input for more examples on capturing

string input from a user. Section 9.4 Ignoring User Input elaborates more on ignoring user input.

#include<iostream> // cout, cin, endl

using namespace std;

int main() {
 // Request and display user's name
 cout << "Enter your first name: ";

 // Input user's name (only the first word/name is captured)
 string name;
 cin >> name;

 cout << "Nice to meet you " << name << "!" << endl;

 // Clear the rest of user input
 cin.ignore();

 // Request and display user's school motto
 cout << "What is your school motto? ";

 // Input the entire line (capture everything user types before
 // pressing <Enter>
 string motto;
 getline(cin, motto);

 cout << "So your school motto is \"" << motto << "\"" << endl;

 return 0;
}

Enter your first name: Aisha

Nice to meet you Aisha!

What is your school motto? Men and Women for Others!

So your school motto is "Men and Women for Others!"

12

3.5 Automatic Data Type (C++11 and up)

Since the 2011 version of C++ (C++11), you can let the compiler predict the data type of a

variable using auto keyword. When using auto, the variable must be initialized because the

compiler will infer the data type from the data that is being stored in the variable. Refer to

Example 13.

Note: You must have C++11 or later selected for this example. Refer to Figure 1: Selecting C++

version in CodeBlocks for instructions on how to specify C++ version in CodeBlocks.

Example 13: Automatic Data Type

#include<iostream> // cout, endl

using namespace std;

int main() {
 auto name = "Alice";
 auto age = 17;

 cout << "Next year, " << name << " will be " << age + 1 << "!" << endl;

 return 0;
}

 Next year, Alice will be 18!

13

4 Basic Operators

C++ supports most of the basic mathematical and comparison operations on data.

4.1 Maths Operations

C++ support the basic mathematics operations using the following operators:

Table 3: Supported Basic Operations

Operation C++ Operator Example

Assignment = int age = 18;

Brackets () int results = (1 + 4);

Division / float pi = 22.0 / 7;

Multiplication * int product = 6 * 82;

Addition + int sum = 5 + 9 + 18 + 19;

Subtraction - int difference = 875 – 8;

Increment by one ++
int x = 2;

x++; // Now the value of x is 3

Decrement by one --
int x = 2;

x--; // Now the value of x is 1

Modulus %

// y contains the remainder of

// dividing 17 by 5

int y = 17 % 5;

4.2 Comparison

Table 4: Comparison/Logical Operators

Comparison C++ Operator

Equal to ==

Not equal to !=

Greater than >

Greater than or equal to >=

Less than <

Less than or equal to <=

And &&

Or ||

Not !

14

5 Program Control

In life, we make decisions and take different actions depending on the decision we make. For

instance, at some point during O-Level, students decide to either take Science, Commercial, or

Arts streams. The subjects that students will study in Form 3 and 4 depend on this decision.

Likewise, in programming, we need to be able to take a different course of action depending

on user’s actions or available data. For instance, allowing a user to open a file or not depending

on if the user has permissions to view the file or not. A number of program control structures

are available in C++ to support us to achieve this.

5.1 If…Else

This is the simplest decision-making structure. In its simplest, it takes a general form of:

Where statements inside body will be executed if the condition is true (or non-zero). For

instance, in Example 14, although the greeting “Hello!” will always be displayed, the phrase

“You are ready for school!” will only be displayed if age is more than 5 years.

Example 14: Basic If Statement

Usually, a decision involves multiple conditions and a course of action for each condition. A

compound if statement has the following general form:

if (condition) body

#include<iostream> // cout, endl

using namespace std;

int main() {
 int age = 10;

 cout << "Hello!" << endl;

 if (age > 5) cout << "You are ready for school!" << endl;

 return 0;
}

Hello!

You are ready for school!

if (condition-1) body-1

else if (condition-2) body-2

.

.

else if (condition-n) body-n

else default-body

15

Each if or else if will have its own condition and a body of statements that will be executed if

that condition is true (or non-zero). If none of the conditions are evaluated to be true, then the

default-body defined in else will be evaluated. In a compound if statement, only one body will

be executed. Either of the first condition to be evaluated as true or of the else part. If the

compound if statements contains more than one conditions that are true, only the first one will

be executed.

Note: if the body contains more than one statement, they must be surrounded by curly braces,

{ }. If the body contains only a single statement, the curly braces are optional and a matter of

personal preference or agreed rules (if you are coding with others as part of a project).

Example 15: Compound If Statement

In Example 15, we can understand the if statements as follows.

• Line 10: checks if the score is negative or more than 100. This is an invalid score.

• Line 12: at this point, the score will be a number from 0 to 100 (otherwise it would have

been captured by Line 10). Line 12 checks if the score is more than 80 and evaluates this

as grade of A. There is no need to check if the score is less than 100 (score > 80 &&

score <= 100) because Line 10 already eliminated all the scores above 100 as invalid.

• Line 14: checks if the score is more than 60 and evaluates this as a grade of B. There is

no need to also check if the score is less than 80 (score > 60 && score <= 80) because

if was more than 80, Line 12 would have captured it and Line 14 would not be executed.

#include<iostream> // cout, cin, endl

using namespace std;

int main() {
 cout << "Enter your exam score: ";
 int score;
 cin >> score;

 if (score > 100 || score < 0) {
 cout << "Invalid score!" << endl;
 } else if (score > 80) {
 cout << "That's a grade of A" << endl;
 } else if (score > 60) {
 cout << "That's a grade of B" << endl;
 } else if (score > 40) {
 cout << "That's a grade of C" << endl;
 } else if (score > 20) {
 cout << "That's a grade of D" << endl;
 } else {
 cout << "That's a grade of F" << endl;
 }

 return 0;
}

Enter your score: 78

That's a grade of B

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

35.

36.

37.

38.

39.

40.

41.

42.

16

• The same principle applies to lines 16 and 18.

• Line 20: captures the remaining possible situation if all above conditions are false: the

score is between 0 and 20. This is evaluated as grade of F.

Most of the time, compound if statements contain two cases: it is either this way or that way.

This is very common that it has a one-line shorthand structure for it called a conditional/ternary

operator with the following general form:

This can be seen in action in Example 16 below.

Example 16: Shorthand If...Else (Ternary Operator)

The ternary operator is especially useful when we need to assign a value that is based on

another condition. Consider a case where you want to manually find the magnitude of a

number. For instance, the magnitude of -5 is 5 and the magnitude of 5 is 5. We can accomplish

this as shown in Example 17.

Example 17: Ternary Operator in Action

condition ? body-if-true : body-if-false ;

#include<iostream> // cout

using namespace std;

int main() {
 int age = 13;

 age >= 18 ? cout << "Can drive!\n" : cout << "Cannot drive!\n";

 return 0;
}

Cannot drive!

#include<iostream> // cout, endl

using namespace std;

int main() {
 int num = -777;
 int magnitude = (num > 0) ? num : -num;

 cout << "Magnitude: " << magnitude << endl;

 return 0;
}

Magnitude: 777

17

5.2 Switch

Switch statement simplifies building long compound if statements that compare a variable to

several integral values. Switch takes the following general form:

A common application of switch is during the evaluation of user input.

Example 18: Switch...Case in Action

Note: If break is omitted, all the statements following a matching case will be executed until a

break is found or the end of switch is reached.

switch (variable) {

 case value-1: body-1; break;

 case value-2: body-2; break;

 .

 .

 case value-n: body-n; break;

 default: default-body;

}

#include<iostream> // cout, cin, endl

using namespace std;

int main() {
 cout << "Please select the next action:" << endl
 << "-----------------------------" << endl
 << "1. Quit the program." << endl
 << "2. Resume the program." << endl
 << "3. Restart the program." << endl
 << "Enter your choice: ";

 int choice;
 cin >> choice;

 switch (choice) {
 case 1: cout << "Quitting..." << endl; break;
 case 2: cout << "Resuming..." << endl; break;
 case 3: cout << "Restarting..." << endl; break;
 default: cout << "Invalid choice!" << endl; break;
 }

 return 0;
}

Please select the next action:

1. Quit the program.

2. Resume the program.

3. Restart the program.

Enter your choice: 3

Restarting...

18

6 Repetition

Loops are used when a similar action needs to be performed repeatedly for a given number of

times or until a certain condition is met. There are two forms of loops in C++:

i. For loop — usually used when repetition is for a given number of times

ii. While loop — usually used when repetition should continue until a condition is met

However, any for loop can be re-written using a while loop and vice versa.

6.1 While Loop

A while loop has the following general form:

If the value of the condition is true (or non-zero), the body will be executed. Then, the condition

will be tested again, if it is still true (or non-zero), the body will be executed again. This will

continue until the condition is false.

For instance, the following loop will print all positive numbers less than ten.

Example 19: While Loop

Note:

i. The body can be a single statement or more. If the body has more than one statement,

the statements must be enclosed between the curly braces as shown in Example 19.

ii. In Example 19, the body is executed nine times before the condition becomes false

(when num=10 since the expression “10 < 10” is false).

iii. It is possible that the body of loop will never be executed. This happens when the

condition can never be true. Like in the following example, a number cannot be less than

itself.

while (condition) body

#include<iostream> // cout

using namespace std;

int main() {
 int num = 1;

 while (num < 10) {
 cout << num << " ";
 num++;
 }

 return 0;
}

1 2 3 4 5 6 7 8 9

19

Example 20: Non-Executed Body of While Loop

iv. Also, if the condition cannot become false, the body will be executed repeatedly without

end (infinite loop).

Example 21: Infinite While Loop

v. Also, below is an example that demonstrates that the condition will be evaluated as true

if a non-zero number is passed and as false if a zero is passed.

#include<iostream> // cout

using namespace std;

int main() {
 int num = 1;

 while (num < num) {
 cout << num << " ";
 num++;
 }

 return 0;
}

#include<iostream> // cout, endl

using namespace std;

int main() {

 while (true) {
 cout << "Run this at your own risk!" << endl;
 }

 return 0;
}

20

Example 22: Non-Zero as True and Zero as False

#include<iostream> // cout

using namespace std;

int main() {
 int num = 10;

 while (num) {
 cout << num << " ";
 num--;
 }

 return 0;
}

10 9 8 7 6 5 4 3 2 1

21

6.2 Do…while Loop

In C++, the while loop can be written to begin with the body. This can be useful in such cases

when the body must be executed at least once. In Example 23, “Hello buddy!!” greeting will be

displayed at least once. The exact number of greetings that will be displayed will depend on

user’s input.

Example 23: Do...While

6.3 For Loop

A for loop has the following general form:

Similar to the while loop, in a for loop, the body will be executed as long as the condition is true.

In addition, a for loop contains two additional segments:

i. Initialization: this statement is executed only once, at the beginning of the loop. Usually,

this defines and initializes a counter variable.

ii. Increase: this statement is executed between iterations of the loop. Usually, this

increments or decrements the counter that tracks the loop execution.

Note: An iteration is a single execution/repetition of a loop. For instance, in Example 24, the

loop repeats five times. Hence, we say, the loop had five iterations. In iteration 1, it displayed

A. In iteration 2, it displayed B. This continues until iteration 5 where it displays E. After this,

the value of “c” becomes ‘F’ and the expression “F < F” becomes false. Hence, the loop

terminates.

#include<iostream> // cout, cin, endl

using namespace std;

int main() {
 cout << "Enter 'Y' to stop or any other letter to repeat" << endl;

 char response;

 do {
 cout << "Hello buddy!!" << endl;
 cin >> response;
 } while (response != 'Y' && response != 'y');

 return 0;
}

for (initialization; condition; increase) body

22

Example 24: For Loop

In a for loop, any of the parts (initialization, condition, or increment) can be omitted. An easy

way to create an infinite loop is to omit all the three parts as shown below.

Example 25: Infinite For Loop

Also, more than one variable can be initialized or incremented in a for loop. If all the variables

to be initialized are of the same data type, they can also be defined in the initialization part. If

they are of different data types, they must be defined outside the for loop. In Example 26, we

count from A to E and display the letters with the first five odd numbers. Since num and ch are

of different data types, they have been defined outside the for loop.

#include<iostream> // cout

using namespace std;

int main() {

 for (char c = 'A'; c < 'F'; c++) {
 cout << c << " ";
 }

 return 0;
}

A B C D E

#include<iostream> // cout, endl

using namespace std;

int main() {

 for (; ;) {
 cout << "This is an infinite loop!" << endl;
 }

 return 0;
}

23

Example 26: Initializing Multiple Variables in For Loop

6.4 Range-Based For Loop (C++11 and up)

Since C++11, C++ includes a shorthand syntax for a for loop that is especially useful in

accessing individual values in a list/array.

Note: You must have C++11 or later selected for this example. Refer to Figure 1: Selecting C++

version in CodeBlocks for instructions on how to specify C++ version in CodeBlocks.

Example 27: Range-based For Loop (C++11 and up)

Also, in the shorthand version, you can let a compiler automatically select the data type using

the auto keyword. The header of the for loop in Example 27 can be also written as follows.

#include<iostream> // cout

using namespace std;

int main() {
 int num;
 char ch;

 for (num = 1, ch = 'A'; ch < 'F'; num += 2, ch++) {
 cout << ch << num << "\t";
 }

 return 0;
}

 A1 B3 C5 D7 E9

#include<iostream> // cout, endl

using namespace std;

int main() {
 string studentsList[] = { "Anne", "Bakari", "Caren", "Daudi" };

 for (string name : studentsList) {
 cout << name << endl;
 }

 return 0;
}

 Anne
Bakari

Caren

Daudi

for (auto name : studentsList) {
 cout << name << endl;
}

24

6.5 Nested Loops

The body of one loop can contain other loops. This is called nesting the loops. Loops can be

nested to solve various problems.

Example 28 generates a diamond shape using asterisk (*) character, space, and nested for

loops.

Example 28: Generating a Diamond Shape

#include<iostream> // cout, endl

using namespace std;

int main() {
 const int SIZE = 5;

 // Display the top triangle
 for (int row = 0; row < SIZE; row++) {
 cout << endl; // Start a new row

 // Add space before the asterisks
 for (int col = SIZE-row-1; col > 0; col--) cout << " ";

 // Display the asterisks
 for (int col = 0; col < 2*row+1; col++) cout << "*";
 }

 // Display the bottom triangle
 for (int row = 0; row < SIZE; row++) {
 cout << endl; // Start a new row

 // Add space before the asterisks
 for (int col = 0; col < row+1; col++) cout << " ";

 // Display the asterisks
 for (int col = 2*(SIZE-row)-3; col > 0; col--) cout << "*";
 }

 return 0;
}

 *

 *

25

Example 29, generates a multiplication table using nested loops.

Example 29: Generating Multiplication Table

#include<iostream> // cout, endl
#include<iomanip> // setw

using namespace std;

int main() {
 const int SIZE = 10;
 const int SPACE = 4;

 for (int row = 1; row <= SIZE; row++) {
 cout << endl;

 for (int col = 1; col <= SIZE; col++) {
 cout << setw(SPACE) << row * col << " ";
 }
 }

 return 0;
}

 1 2 3 4 5 6 7 8 9 10

 2 4 6 8 10 12 14 16 18 20

 3 6 9 12 15 18 21 24 27 30

 4 8 12 16 20 24 28 32 36 40

 5 10 15 20 25 30 35 40 45 50

 6 12 18 24 30 36 42 48 54 60

 7 14 21 28 35 42 49 56 63 70

 8 16 24 32 40 48 56 64 72 80

 9 18 27 36 45 54 63 72 81 90

 10 20 30 40 50 60 70 80 90 100

26

6.6 Break and Continue

Break and continue are used within loops to control execution of the body of the loop. Continue

stops the execution of the current iteration and goes to the next iteration if the condition of

the loop is still true. Break stops the execution of the current iteration and exits the loop

regardless of the condition of the loop.

In Example 30, for all even values of num, the execution of the iteration is stopped before the

number can be printed in Line 10.

Example 30: Continue Next Iteration

In Example 31, when num is 7, break is executed, and the loop execution stops. As a result,

only 1 through 6 gets to be displayed.

Example 31: Break a Loop

#include<iostream> // cout

using namespace std;

int main() {

 for (int x = 1; x <= 10; x++) {
 if (x % 2 == 0) continue; // Stop iteration if number is even

 cout << x << " ";
 }

 return 0;
}

 1 3 5 7 9

#include<iostream> // cout

using namespace std;

int main() {

 for (int num = 1; num <= 10; num++) {
 if (num == 7) break; // Stop the entire loop if number is seven

 cout << num << " ";
 }

 return 0;
}

 1 2 3 4 5 6

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.

18.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.

18.

27

7 Data Structures

To become a good programmer, one needs to master the use of both: data structures and

algorithms. A data structure is a particular way to store and organize data in a computer

memory that enables effective and efficient processing of the data. In this context, an

algorithm refers to a well-defined procedure that enables a computer to solve a particular

problem. This guideline will focus on data structures and some examples of their application.

Please refer to Practical Guideline 2: Algorithms and Problem Solving in C++ for an in-depth

coverage of algorithms.

7.1 Linear Data Structures

A data structure is classified as linear if its elements are organized in a sequence.

7.1.1 Static Array

A static array is a series of elements of the same data type in contiguous memory locations that

can be individually referenced by adding an index to a unique identifier. A static array can be

declared by specifying the data type of its elements, its name, and its maximum size.

In Example 32, an array that can hold 3 strings is defined and populated.

Example 32: Basic Array

type name [size];

#include<iostream> // cout, endl

using namespace std;

int main() {

 string subjects [3];

 subjects[0] = "Economics";
 subjects[1] = "Geography";
 subjects[2] = "Mathematics";

 for (int k = 0; k < 3; k++) cout << subjects[k] << endl;

 return 0;
}

Economics

Geography

Mathematics

28

Note:

i. Each element in an array can be referenced using a key starting from zero. The first

element is at 0, the second at 1, and so on.

ii. The size of an array cannot be changed once it has been defined. You need to think

ahead and define an array with the maximum possible size you need.

Like a normal variable, an array can be initialized during its definition as shown in Example 33.

Example 33: Initialize an Array

Also, since C++11, a range-based for loop can be used to simplify accessing an array element as

shown in Example 34.

Example 34: Accessing Array Elements (C++11 and up)

#include<iostream> // cout, endl

using namespace std;

int main() {

 string subjects [] = { "Economics", "Geography", "Mathematics" };

 for (int k = 0; k < 3; k++) cout << subjects[k] << endl;

 return 0;
}

#include<iostream> // cout, endl

using namespace std;

int main() {

 string subjects [] = { "Economics", "Geography", "Mathematics" };

 for (auto subject : subjects) cout << subject << endl;

 return 0;
}

29

7.1.2 Dynamic Array (a.k.a Vector)

A dynamic array (vector) is an array whose size can be changed after it has been defined. A

vector definition takes the following general form:

Example 32 can be re-written using a vector as follows:

Example 35: Basic Dynamic Array

In Example 35, size stores the current number of elements that have been stored in the vector.

Elements can be accessed using their positions (starting at 0) like in static arrays.

vector<type> name;

#include<iostream> // cout, endl
#include<vector> // vector

using namespace std;

int main() {

 vector<string> subjects;

 subjects.push_back("Economics");
 subjects.push_back("Geography");
 subjects.push_back("Mathematics");

 for (int k = 0; k < subjects.size(); k++) cout << subjects[k] << endl;

 return 0;
}

30

Also, elements in a vector can be accessed using an iterator as shown below.

Example 36: Using iterators in Vectors

Note:

i. subjects.begin() is a pointer to the first element in the vector (the beginning)

ii. subjects.end() is a pointer to the location after the last element in the vector. It

does not point to the last element but to the location after the last element.

iii. The iterator (it) is a pointer and stores the address of where data is stored in memory.

To retrieve the actual data (Line 16), we need to instruct the compiler by adding an

asterisk (*) before the iterator (it). This is called de-referencing a pointer.

#include<iostream> // cout, endl
#include<vector> // vector

using namespace std;

int main() {

 vector<string> subjects;

 subjects.push_back("Economics");
 subjects.push_back("Geography");
 subjects.push_back("Mathematics");

 vector<string>::iterator it;
 for (it = subjects.begin(); it != subjects.end(); it++) {
 cout << *it << endl;
 }

 return 0;
}
ac

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

31

Also, since C++11, a vector can be initialized similar to a static array and a range-based for loop

can be used to access elements in a vector. This can simply Example 35 to the following.

Example 37: Accessing Elements in a Vector (C++11 and up)

Vector includes a handful of other common operations that have been summarized in Table 5.

Table 5: Common Vector Operations

Operation Description

begin() Returns an iterator pointing to the first element in the vector

end()
Returns an iterator pointing to the theoretical element that follows the
last element in the vector

empty()
Checks whether the vector is empty. Returns true if the vector is empty,
false otherwise

size() Returns the current number of elements in the vector

capacity()

Returns the size of the storage space currently allocated to the vector
expressed as number of elements based on the memory allocated to the
vector

resize(n)

Resizes the vector so that it contains “n” elements. If the current size of
the vector is greater than n then the extra elements at the back are
removed from the vector. If the current size is smaller than n then extra
elements are inserted at the back of the vector

push_back(x)
Adds a new element “x” at the end of the vector, after its current last
element. This effectively increases the container size by one

clear()
Removes all elements from the vector (which are destroyed), leaving the
vector with a size of 0

swap(v)
Exchanges the contents of one vector with another vector “v” of the
same type. Sizes may differ.

#include<iostream> // cout, endl
#include<vector> // vector

using namespace std;

int main() {

 vector<string> subjects = { "Economics", "Geography", "Mathematics" };

 for (auto subject : subjects) cout << subject << endl;

 return 0;
}

32

7.1.3 Stack

A stack is a container that operates with LIFO (Last In First Out) principle. In a stack, the last

element to be added will be the first element that can be retrieved. It is similar to a stack of

plates (Figure 2), new plates are placed on top and the last plate to be added will be the first

to be removed.

Figure 2: Stack of Plates

In C++, a definition of a stack takes the following general form:

stack<type> name;

33

In Example 38, four numbers are added into a numbers stack. Then one by one, the numbers

are removed from the stack and displayed. It can be seen that the order of the displayed

numbers is reversed from the original.

Example 38: Basic Stack Operations

Standard stack includes a handful of other common operations that have been summarized in

Table 6.

Table 6: Common Stack Operations

Operation Description

empty()
Checks whether the stack is empty. Returns true if the stack is empty, false
otherwise

size() Returns the current number of elements in the stack

push(x) Adds a new element “x” at the top of the stack

pop() Deletes the top most element of the stack

top() Returns a reference to the top most element of the stack

clear()
Removes all elements from the stack (which are destroyed), leaving the
stack with a size of 0

#include<iostream> // cout, endl
#include<stack> // stack

using namespace std;

int main() {
 stack<int> numbers;

 // Add four numbers
 numbers.push(10);
 numbers.push(20);
 numbers.push(30);
 numbers.push(40);

 while (numbers.empty() == false) {
 cout << numbers.top() << endl; // Display the top element
 numbers.pop(); // Remove the top element
 }

 return 0;
}

40

30

20

10

34

Stack Use Case: Balanced Symbols Problem

Understanding the Problem

Balanced symbols problem is a common problem in programing that involves balancing and

nesting different kinds of opening and closing symbols. To simplify the problem, we will

consider only three symbols:

• square brackets: [and]

• curly braces: { and }

• parentheses: (and)

The challenge is to determine whether a given expression such as “[{ () }] ()” is balanced or

not. For instance, the following expressions are all balanced:

• { { ([] []) } () }

• ([{ }] { ([]) }) [{ () }] ()

On the other hand, the following expressions are not balanced:

• ((()])

• ([{ }] { [) }) [[() }]

Consider a balanced expression “[{ () }]”, suppose we read the expression from left to right,

we can observe that:

• The opening square bracket “[“ is the first to be read and its closing square bracket “]”

will be last to be read

• The opening curly brace “{“ is the second to be read and its closing curly brace “}” will be

the second last to be read

• The opening parentheses “(“ is the last opening symbol to be read and its closing

parentheses “)” will be the first closing symbol to be read

Clearly, this is last-in-first-out (LIFO) structure and we can use a stack to solve this problem.

Formulating an Algorithm

Beginning with an empty stack, we can process the expression from left to right. When we

encounter an opening symbol , “[“, “{“ or “(“, we push it onto the stack, since its corresponding

closing symbol will appear later if the expression is balanced. When we encounter a closing

symbol, we check if it matches the symbol on top of the stack e.g. “}” matches “{“. If they match,

remove the opening symbol from the top of the stack (i.e. pop the stack) and continue

processing the expression. If they do not match, the expression is not balanced. As long as it is

possible to pop the stack to match every closing symbol, the expression remains balanced. At

the end of the expression, when we have processed all the symbols, if the expression is

balanced, the stack should be empty.

Implementing the Algorithm

We can implement the above algorithm as follows.

35

Example 39: Stack Use Case (Balanced Symbols Problem)

#include<iostream> // cout, endl
#include<stack> // stack

using namespace std;

int main() {
 const string EXPRESSION = "([{}]{([])})[{()}]()";

 stack<char> symbols;
 bool isBalanced = true;

 // Process the expression from left to right
 for (int k = 0; k < EXPRESSION.size(); k++) {
 char ch = EXPRESSION[k];

 // Push an opening symbol onto the stack
 if (ch == '{' || ch == '[' || ch == '(') symbols.push(ch);

 // Process a closing symbol
 else if (ch == '}' || ch == ']' || ch == ')') {
 // Check if the closing symbol matches what is on top of the stack
 if ((ch == '}' && symbols.top() == '{') ||
 (ch == ']' && symbols.top() == '[') ||
 (ch == ')' && symbols.top() == '(')) {
 // Remove the top opening symbol since they match
 symbols.pop();
 } else {
 // Mismatching symbols found
 isBalanced = false;
 break; // No need to continue since a mismatch is already found
 }
 }

 // Unknown symbol found
 else {
 cout << "Unknown symbol '" << ch << "' in the expression!" << endl;
 isBalanced = false;
 break;
 }
 }

 // A balanced stack leaves an empty stack at the end of the day
 if (symbols.size() > 0) isBalanced = false;

 // Display results
 if (isBalanced) cout << "\"" << EXPRESSION << "\" is balanced!" << endl;
 else cout << "\"" << EXPRESSION << "\" is NOT balanced!" << endl;

 return 0;
}

"([{}]{([])})[{()}]()" is balanced!

36

7.1.4 Queue

A queue is a container that operates with FIFO (First In First Out) principle. In a queue, the first

element to be added will be the first element that can be retrieved. It is similar to a queue of

people (Figure 3), the first person to arrive will be the first one to be served and an additional

person joins at the back of the queue.

Figure 3: Queue of People

In C++, a definition of a queue takes the following general form:

In Example 40, four numbers are added into a queue. Then one by one, the numbers are

retrieved from the queue and displayed. It can be seen that the order of the displayed numbers

is the same as the original.

queue<type> name;

37

Example 40: Basic Queue Operations

Standard queue includes a handful of other common operations that have been summarized in

Table 7.

Table 7: Common Queue Operations

Operation Description

empty()
Checks whether the queue is empty. Returns true if the queue is empty,
false otherwise

size() Returns the current number of elements in the queue

push(x) Adds a new element “x” at the back of the queue

pop() Deletes the front most element of the queue

front() Returns a reference to the front most element of the queue

clear()
Removes all elements from the queue (which are destroyed), leaving the
queue with a size of 0

#include<iostream> // cout, endl
#include<queue> // queue

using namespace std;

int main() {
 queue<int> numbers;

 // Add four numbers
 numbers.push(10);
 numbers.push(20);
 numbers.push(30);
 numbers.push(40);

 while (numbers.empty() == false) {
 cout << numbers.front() << endl; // Display the front element
 numbers.pop(); // Remove the front element
 }

 return 0;
}

10

20

30

40

38

Queue Applications

Queues have extensively been used to solve real-world problems that involve some aspect of

someone/something waiting in line, such as:

i. Key press sequence in a keyboard

ii. Ticketing systems in public service stations where who comes first will be served first

iii. ATM booth line

iv. Printing jobs sent to a printer

v. Job scheduling in an operating system

39

7.2 Non-Linear Data Structures

A non-linear data structure organizes its elements in a non-sequential manner. For some types

of data, like a set of key and value pairs, organizing the data in non-sequential manner results

in quicker operations like insertion, deletion, and retrieval.

7.2.1 Map

A map is an associative container that stores elements formed by a combination of a key and

its corresponding value. For instance, a map of a student can look like:

 “name” : “Alice Bob”

 “gender” : “Female”

 “form” : “Five”

 “stream” : “ECA”

 “total exams”: “Five”

 “joined” : “2019”

In the above map, the keys are name, gender, form, stream, total exams, and joined. Each key

must be unique and associated with a value. The values can be the same between different keys

(e.g. between form and total exams). All keys should have the same data type, and all values

should have the same data type. The data type of keys and of values can be different.

In C++, a definition of a map takes the following general form:

In Example 41, the maps contain a translation of digits between English and Kiswahili as well as

between English words and numbers. The maps can be used to translate a phone number given

in English to Kiswahili and its corresponding digits.

map<keys-type, values-type> name;

40

#include<iostream> // cout, endl
#include<map> // map

using namespace std;

int main() {
 // Build an English to Kiswahili mapping of digits
 map<string, string> engToKisw;
 engToKisw["zero"] = "sifuri";
 engToKisw["one"] = "moja";
 engToKisw["two"] = "mbili";
 engToKisw["three"] = "tatu";
 engToKisw["four"] = "nne";
 engToKisw["five"] = "tano";
 engToKisw["six"] = "sita";
 engToKisw["seven"] = "saba";
 engToKisw["eight"] = "nane";
 engToKisw["nine"] = "tisa";

 // Build an English words to numbers mapping of digits
 map<string, char> engToNum;
 engToNum["zero"] = '0';
 engToNum["one"] = '1';
 engToNum["two"] = '2';
 engToNum["three"] = '3';
 engToNum["four"] = '4';
 engToNum["five"] = '5';
 engToNum["six"] = '6';
 engToNum["seven"] = '7';
 engToNum["eight"] = '8';
 engToNum["nine"] = '9';

 // Test the conversions
 string digits[] = {
 "zero", "seven", "five", "four", "two",
 "four", "zero", "nine", "seven", "six"
 };
 string trans_eng = "";
 string trans_kisw = "";
 string trans_num = "";

 for (int k = 0; k < sizeof(digits)/sizeof(string); k++) {
 trans_eng += " " + digits[k];
 trans_kisw += " " + engToKisw[digits[k]];
 trans_num += engToNum[digits[k]];
 }

 cout << "English: " << trans_eng << endl;
 cout << "Kiswahili: " << trans_kisw << endl;
 cout << "Number: " << trans_num << endl;

 return 0;
}

41

Example 41: Translation Using a Map

Since C++11, the map can easily be initialized during its definition. Example 41 can be re-written

as follows:

English: zero seven five four two four zero nine seven six

Kiswahili: sifuri saba tano nne mbili nne sifuri tisa saba sita

Number: 0754240976

42

Example 42: Translation Using Map (C++11 and up)

#include<iostream> // cout, endl
#include<map> // map
#include<vector> // vector

using namespace std;

int main() {
 // Build an English to Kiswahili mapping of digits
 map<string, string> engToKisw = {
 {"zero", "sifuri"}, {"one", "moja"}, {"two", "mbili"},{"three", "tatu"},

 {"four", "nne"}, {"five", "tano"}, {"six", "sita"}, {"seven", "saba"},
 {"eight", "nane"}, {"nine", "tisa"}
 };

 // Build an English words to numbers mapping of digits
 map<string, char> engToNum = {
 {"zero", '0'}, {"one", '1'}, {"two", '2'}, {"three", '3'},{"four", '4'},

 {"five", '5'}, {"six", '6'}, {"seven", '7'},{"eight", '8'},{"nine", '9'}

 };

 // Test the conversions
 vector<string> digits = {
 "zero", "seven", "five", "four", "two",
 "four", "zero", "nine", "seven", "six"
 };
 string trans_eng = "";
 string trans_kisw = "";
 string trans_num = "";

 for (int k = 0; k < digits.size(); k++) {
 trans_eng += " " + digits[k];
 trans_kisw += " " + engToKisw[digits[k]];
 trans_num += engToNum[digits[k]];
 }

 cout << "English: " << trans_eng << endl;
 cout << "Kiswahili: " << trans_kisw << endl;
 cout << "Number: " << trans_num << endl;

 return 0;
}

 English: zero seven five four two four zero nine seven six

Kiswahili: sifuri saba tano nne mbili nne sifuri tisa saba sita

Number: 0754240976

43

7.2.2 Set

A set is a container that stores unique elements following a specific order. All values in a set

must have the same data type. The values in a set cannot be modified, but they can be inserted

or deleted.

In C++, a definition of a set takes the following general form:

In Example 43, seven combinations are added into a set. Then one by one, the combinations are

retrieved from the set and displayed. It can be seen that this results in a unique and sorted list

of combinations.

Example 43: Basic Set Operations

Since C++11, set initialization is supported and Example 43 can be written as shown in Example

44.

set<type> name;

#include<iostream> // cout, endl
#include<set> // set

using namespace std;

int main() {
 set<string> combinations;

 combinations.insert("EGM");
 combinations.insert("PCM");
 combinations.insert("PCB");
 combinations.insert("ECA");
 combinations.insert("HGL");
 combinations.insert("EGM");
 combinations.insert("HGL");

 cout << "Unique sorted combinations: ";

 set<string>::iterator it;
 for (it = combinations.begin(); it != combinations.end(); it++) {
 cout << *it << " ";
 }

 return 0;
}

Unique sorted combinations: ECA EGM HGL PCB PCM

44

Example 44: Set Operations (C++11 and up)

Standard set includes a handful of other common operations that have been summarized in

Table 8.

Table 8: Common Set Operations

Operation Description

empty()
Checks whether the set is empty. Returns true if the set is empty, false
otherwise

size() Returns the current number of elements in the set

insert(x)
Adds a new element “x” into the set (if it does not already exist) and
ensures elements in the set are sorted

erase(x) Removes the element with a value of “x” from the set

find(x) Returns a reference (iterator) to the element with a value of “x”

clear()
Removes all elements from the set (which are destroyed), leaving the set
with a size of 0

#include<iostream> // cout, endl
#include<set> // set

using namespace std;

int main() {
 set<string> combinations = {
 "EGM", "PCM", "PCB", "ECA", "HGL", "EGM", "HGL"
 };

 cout << "Unique sorted combinations: ";

 set<string>::iterator it;
 for (it = combinations.begin(); it != combinations.end(); it++) {
 cout << *it << " ";
 }

 return 0;
}

Unique sorted combinations: ECA EGM HGL PCB PCM

45

Set Use Case: Intersection of Two Lists

A common problem in programming is to determine the common elements between two lists.

For instance, given a list of all students taking Advanced Mathematics and a list of all students

taking Chemistry, can you generate a list of all students taking both Chemistry and Advanced

Mathematics?

In C++, this can easily be accomplished using set. Other containers can be used as well (like

arrays and vectors) but they will have to be sorted first. Sets are ideal because their elements

are already sorted.

Example 45: Set Intersection (C++11 and up)

Note: Sometimes it is critical to allow duplicates in a set. In C++, this can be achieved using a

multiset. Multiset operations are similar to that of a set. A multiset can be defined as:

#include<iostream> // cout, endl
#include<algorithm> // set_intersection
#include<set> // set, inserter

using namespace std;

int main() {
 // Set of students taking Chemistry
 set<string> chem = {
 "Aidan", "Flora", "Victoria", "Caleb", "Nick", "Diana", "John"
 };

 // Set of students taking Advanced Mathematics
 set<string> math = {
 "Jasmin", "Victoria", "Nick", "Aidan", "Latifa", "Rashidi", "Ali"
 };

 // Generate a set of students taking both subjects
 set<string> both;
 set_intersection(chem.begin(), chem.end(), math.begin(), math.end(),
 inserter(both, both.begin()));

 // Display the list of students taking both subjects
 cout << "Students taking both subjects: ";

 set<string>::iterator it;
 for (it = both.begin(); it != both.end(); it++) {
 cout << *it << " ";
 }

 return 0;
}

Students taking both subjects: Aidan Nick Victoria

multiset<type> name;

46

7.2.3 Priority Queue

A priority queue is a container that organizes its elements in such a way that its first element

is always the greatest of all the elements it contains.

In C++, a definition of a priority queue takes the following general form:

In Example 46, three numbers are added into a priority queue. At this point, 30 will be the top

number. Then, 40 is added into the priority queue, making it the new top number. Then, the top

number is removed from the priority queue, making 30 the new top number.

Example 46: Priority Queue in Action

Standard queue includes a handful of other common operations that have been summarized in

Table 9.

Table 9: Common Priority Queue Operations

Operation Description

empty()
Checks whether the priority queue is empty. Returns true if the priority
queue is empty, false otherwise

queue<type> name;

#include<iostream> // cout, endl
#include<queue> // priority_queue

using namespace std;

int main() {
 priority_queue<int> numbers;

 numbers.push(10);
 numbers.push(30);
 numbers.push(20);

 cout << "Front number: " << numbers.top() << endl;

 numbers.push(40);

 cout << "Front after adding 40: " << numbers.top() << endl;

 numbers.pop();

 cout << "Front after removing the top number: " << numbers.top() << endl;

 return 0;
}

Front number: 30

Front after adding 40: 40

Front after removing the top number: 30

47

size() Returns the current number of elements in the priority queue

push(x)
Adds a new element “x” into the priority queue. If this is the largest
element, it will also become the top element

pop() Deletes the largest value from the priority queue

top() Returns a reference to the largest element in the priority queue

Priority Queue Applications

Priority queues are extensively used in the implementation of algorithms, such as:

i. Dijkstra’s shortest path algorithm

ii. Prim’s algorithm

iii. A* search algorithm

iv. Huffman codes for data compression

v. Load balancing and interrupt handling in operating systems

48

8 Data Streams

8.1 Standard Input and Output Streams

So far, we have been creating programs that take input from the keyboard and display output

on the console screen. We have used the inbuilt cin and cout provided by the iostream

standard library to read user input from the keyboard and write output on the console screen

respectively (Figure 4).

Figure 4: Default Standard Input and Output Streams

cin and cout are examples of streams. A stream provides a data transfer connection between

our program and a data object like a file, keyboard, or a console screen. If a stream allows data

to flow from a data object (keyboard, file) into our program, we call it an input stream (e.g. cin).

On the other hand, if a stream allows data to flow from our program into a data object (console

screen, file), we call it an output stream (e.g. cout).

cin is an in-built input stream that by default is hooked to the keyboard. Hence, we can use cin

in its default configuration to input data from a keyboard into our program.

cout is an in-built output stream that by default is hooked to the console screen. Hence, we can

use cout in its default configuration to output data from our program to the console screen.

In Example 47 below, you can notice that “>>” and “<<” operators point in the direction of data

flow. For instance, in Line 6, data ("Enter your name: ") flows from our program to the cout

stream (and eventually to the console screen). In Line 8, data (whatever the user will input as

the name) flows from the cin stream into our program and gets stored inside name. The same

data stored in name will be part of the data that flows out of our program to the cout stream in

Line 10.

49

Example 47: Default Standard Input and Output Streams

8.2 Redirecting the Standard Input and Output

As demonstrated in Section 8.1, by default cin is hooked to the keyboard and cout is hooked to

the console screen. C++ includes the ability to redefine what cin and cout are hooked to.

Usually, cin and cout are redefined to point to text files.

Figure 5: Redefined Standard Input and Output Streams

Before executing Example 48, create a text file called “data.txt” in the same location where

the program source file is located. Add your name, save, and close the file. If the program is

now compiled and executed, nothing will appear on the console screen. This is because all the

output data will be saved in a file called “output.txt”.

Notice that the program (Lines 14 to 19) did not change after we redirected the standard input

and standard output streams. Also, you can decide to just redirect a single standard stream (cin

only or cout only). For instance, if you comment out Line 11, the name will still be fetched from

the “data.txt” file but the output will be displayed on the console screen.

#include<iostream> // cout, cin, endl

using namespace std;

int main() {
 cout << "Enter your name: ";
 string name;
 cin >> name;

 cout << "Thank you " << name << "!" << endl;

 return 0;
}

Enter your name: Alice

Thank you Alice!

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.

50

Example 48: Redirected Standard Input and Output Streams

8.3 User Defined Input and Output Streams

What if we want to get some of the data from the keyboard and some of the data from a file at

the same time. What if we want to save some output into a file and display some output on the

console screen?

We can leave cin and cout in their default configurations (hooked to the keyboard and console

screen respectively) and define our own input and output streams that point to our desired

files. This can enable us to interact with files as well as the keyboard and console screen at the

same time (Figure 6).

Alice

#include<iostream> // cout, cin, endl
#include<cstdio> // freopen, stdin, stdout

using namespace std;

int main() {
 // Redefine the standard input to point to our own file
 freopen("data.txt", "r", stdin);

 // Redefine the standard output to point to our own file
 freopen("output.txt", "w", stdout);

 //cout << "Enter your name: ";
 string name;
 cin >> name;

 cout << "Thank you " << name << "!" << endl;

 return 0;
}

Thank you Alice!

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Input File

Output File

51

Figure 6: User Defined Input and Output Streams

In Example 49, Line 9 defines our custom input stream called “inFile” and bind it to

“country.txt” file. This file should exist before compiling and executing the example. Hence,

create the text file and add your country, save, and close the file.

Line 12 defines our custom output stream called “outFile” and bind it to “results.txt”. This

file will be created when the program is executed. If a file with the same filename exists, its

data will be overwritten.

inFile and outFile are the variables that reference the streams we have created. You can

assign any names to the custom streams like any other variable.

Lines 21 & 28 show how the streams can be used. As we can see, inFile and outFile can be

used similar to cin and cout respectively.

Lines 31 & 32 close the two streams we have created. It is the best practice to close the

resources we have created once we are done using them.

Once the program is executed, we can see that it fetches some data from the file and requests

some from the user. Also, it displays some output on the console screen and save some data in

a results file.

52

Example 49: User Defined Input and Output Streams

Tanzania

#include<iostream> // cout, cin, endl
#include<cstdio> // freopen, stdin, stdout
#include<fstream> // ifstream, ofstream

using namespace std;

int main() {
 // Define an input file stream and bind it to our own file
 ifstream inFile("country.txt");

 // Define an output file stream and bind it to our own file
 ofstream outFile("results.txt");

 // Request for a user's name
 cout << "Enter your name: ";
 string name;
 cin >> name;

 // Extract the country from the file
 string country;
 if (inFile.is_open()) { // Check if the file was opened successfully
 inFile >> country;
 } else {
 country = "N/A"; // Set a default country value
 }

 // Display results to the console screen
 cout << "Thank you " << name << " from " << country << "!"<< endl;
 cout << "This message is also saved in \"results.txt\"" << endl;

 // Save the same results into a file
 outFile << "Thank you " << name << " from " << country << "!"<< endl;

 // Close the streams we defined
 inFile.close();
 outFile.close();

 return 0;
}

Enter your name: Alice

Thank you Alice from Tanzania!

This message is also saved in "results.txt"

Thank you Alice from Tanzania!

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Console Screen

Output File

Input File

53

8.4 String Streams

A string stream provides a stream that we can put data into as if it were an output stream like

cout and we can read from it as if it were an input stream like cin.

Figure 7: String Stream

From Figure 7, we can see that we can add data into a string stream and read from the front of

a string stream. This provides a strong method to parse user input or manipulate data between

different data types as shown in the following examples.

Example 50: String Stream

In Example 50, a string stream “ss” is created with initial data “Alice 19” in Line 8. The data

contained in “ss“ can be read just as we have been reading data from cin as shown in Lines 12

& 15.

#include<iostream> // cout, cin, endl
#include<sstream> // stringstream

using namespace std;

int main() {
 // Create a string stream from string data
 stringstream ss("Alice 19");

 // Read data from the string stream
 string name;
 ss >> name;

 int age;
 ss >> age;

 cout << name << " is " << age << " years old!" << endl;

 return 0;
}

Alice is 19 years old!

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

35.

54

A common use of a string stream is to convert between different data types. In Example 51, we

try to convert two strings (cleanData and dirtData) to integers. An attempt is made to

convert each string (Lines 16 & 27), then the status of the string stream is checked (Lines 18 &

29) to determine if the conversion was successful or not. As shown in Section 9.2, this technique

can be used to guard a program from crashing when a user supplies an invalid input.

Example 51: Data Conversion Using String Streams

Note: In Example 51, at any time, we can get all the contents currently in the stream using:

#include<iostream> // cout, cin, endl
#include<sstream> // stringstream

using namespace std;

int main() {
 string cleanData = "538";
 string dirtData = "WB78";

 stringstream ss; // Create an empty string stream

 int num;

 // Attempt to convert clean data to a number
 ss << cleanData; // Add clean string data into the stream
 ss >> num; // Try to read data from the stream as an integer

 if (ss.fail()) { // Check if stream was read successfully
 cout << "Error converting " << cleanData << " to integer!" << endl;
 } else {
 cout << num << " was read successfully!" << endl;
 }

 // Attempt to convert dirt data to a number
 ss.str(""); // Clear the contents of the stream (if any)
 ss.clear(); // Reset any errors in the stream

 ss << dirtData; // Add dirt string data into the stream
 ss >> num; // Try to read data from the stream as an integer

 if (ss.fail()) { // Check if stream was read successfully
 cout << "Error converting \"" << dirtData << "\" to integer!" << endl;
 } else {
 cout << num << " was read successfully!" << endl;
 }

 return 0;
}

538 was read successfully!

Error converting "WB78" to integer!

string allStreamData = ss.str();

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

40.

41.

42.

43.

44.

45.

46.

47.

55

9 Guarding Against User Input

Murphy’s law states that “Things will go wrong in any given situation, if you give them a chance”.

Hard-drives can crash, power can go off, user can enter the wrong input, and so on. All such

factors can prevent programs we write from running in the way we intend them to run. Some

of those factors are always beyond the ability of a programmer to address (like power going

off). However, we can prevent our programs from crashing by anticipating what can go wrong

when we write our code, especially in handling data. We can minimize what can go wrong when

our program is executed.

9.1 Anticipating Exceptional Cases

Consider the code in Example 52. The program asks the user to enter two integers and

computes the quotient when the first is divided by the second. We expect the user to enter

numbers like 24 and 6 (first case). However, a user can enter zero as the second number (second

case). This is problematic because dividing an integer by zero is undefined in Mathematics and

results into an undefined behavior in C++. Like in the second case of output, entering 24 and 0

will crash the program.

Example 52: Division Problem

Hence, during programming, one of critical task is to think about such exceptional cases and

write our code in such a way that we protect the program from crashing when such extreme

cases are encountered. From Example 52, we can simply check if the second number is zero

before dividing the two numbers. If the user entered zero as the second number, we can alert

the user that the second number cannot be zero or decide another course of action.

#include<iostream> // cout, cin, endl

using namespace std;

int main() {
 // Request two integers from the user
 cout << "Enter two integers: ";
 int a, b;
 cin >> a >> b;

 cout << a << " divide by " << b << " is " << a / b << endl;

 return 0;
}

Enter two integers: 24 6

24 divide by 6 is 4

Enter two numbers: 24 0

56

9.2 Handling Invalid User Input

We all know such people. The program asks for their age, they enter their name. Sometimes

Most of the time, users make mistakes. It is our duty as programmers to help users achieve their

goals despite the mistakes they make. We have all used the “undo” button.

Consider the following program (Example 53). Suppose a user accidentally types “B21” instead

of “21”, the program will provide a wrong feedback to the user (Garbage In, Garbage Out). How

can we protect the user against such a mistake?

Example 53: Wrong User Input

One solution is to check if the process of reading the input was successful. This can be done by

inspecting the input stream (cin) for a failure. Example 53 can be updated as follows.

#include<iostream> // cout, cin, endl

using namespace std;

int main() {
 cout << "Enter your age: ";
 int age;
 cin >> age;

 if (age > 18) cout << "You can vote!" << endl;
 else cout << "You can start voting after " << 18 - age << " years!\n";

 return 0;
}

Enter your age: B21

You can start voting after 18 years!

57

Example 54: Guarding Against Wrong User Input

Another solution is to always receive user input as string. Then inspect the input to see if it is

what was expected and act accordingly after that. Example 53 can be re-written as shown in

Example 55.

#include<iostream> // cout, cin, endl

using namespace std;

int main() {
 cout << "Enter your age: ";
 int age;
 cin >> age;

 if (cin.fail()) { // Check if reading an integer was successful
 cout << "Invalid input!" << endl;
 } else {
 if (age > 18) cout << "You can vote!" << endl;
 else cout << "You can start voting after " << 18 - age << " years!\n";
 }

 return 0;
}

 Enter your age: B21
Invalid input!

Enter your age: 21

You can vote!

58

Example 55: Guarding and Inspecting Wrong User Input

#include<iostream> // cout, cin, endl, atoi, isdigit

using namespace std;

int main() {
 // Grab user input as text
 cout << "Enter your age: ";
 string input;
 cin >> input;

 // Inspect if the input is valid (in our case: contains only digits)
 bool isValidInput = true;
 for (int k = 0; k < input.size(); k++) {
 if (isdigit(input[k]) == false) {
 isValidInput = false;
 break;
 }
 }

 // Take right action depending on input status
 if (isValidInput) {
 int age = atoi(input.c_str()); // Convert input to a number

 if (age > 18) cout << "You can vote!" << endl;
 else cout << "You can start voting after " << 18 - age << " years!\n";
 } else {
 cout << "\"" << input << "\" is invalid. "
 << "Age should be a positive number!\n";
 }

 return 0;
}

 Enter your age: 21B
"21B" is invalid. Age should be a positive number!

Enter your age: 21

You can vote!

Enter your age: 7

You can start voting after 11 years!

59

9.3 Handling Long String Input

The program in Example 56 asks the user to enter his/her full name (first name and last name).

If we read the full name as we usually do, only the first name will be captured.

Example 56: Reading String Containing Space (Problem)

This can easily be overcome by using getline() function as follows.

Example 57: Reading String Containing Space (Solution)

9.4 Ignoring User Input

Sometimes the user input or data source contains more data than we may need. Suppose the

user always enters a phone number containing the Tanzanian country code (e.g.

+255756123456), but our program needs the number without the country code (e.g.

0756123456). One solution is to ignore the segment of the phone that we do not need when

we are capturing the phone number into our program as shown below.

#include<iostream> // cout, cin, endl

using namespace std;

int main() {
 cout << "Enter your full name: ";
 string fullName;
 cin >> fullName;

 cout << "Welcome " << fullName << "!" << endl;

 return 0;
}

 Enter your full name: Alice Bakara Charles
Welcome Alice!

#include<iostream> // cout, cin, endl, getline

using namespace std;

int main() {
 cout << "Enter your full name: ";
 string fullName;
 getline(cin, fullName);

 cout << "Welcome " << fullName << "!" << endl;

 return 0;
}

 Enter your full name: Alice Baraka Charles
Welcome Alice Baraka Charles!

60

Example 58: Ignoring User Input

Also, ignore() can specify a terminating character. For instance, Example 59 asks to skip the

next 10 characters or until a hyphen (-) is found in the user input, whatever that comes first.

Example 59: Ignoring User Input Until a Character

*** The End of Practical Guideline 1 ***

#include<iostream> // cout, endl

using namespace std;

int main() {
 cout << "Enter your phone number (+255XXXXXXXXX): ";

 string number;
 cin.ignore(4); // Ignore the first four characters
 cin >> number; // Grab the rest of the number
 number = "0" + number; // Add the leading zero

 cout << "Your number is: " << number << endl;

 return 0;
}

 Enter your phone number (+255XXXXXXXXX): +255787123456
Your number is: 0787123456

#include<iostream> // cout, cin, endl

using namespace std;

int main() {
 cout << "Enter your name: ";

 string name;
 cin.ignore(10, '-'); // Ignore the first 10 characters or until ‘-‘ is read
 cin >> name;

 cout << name << endl;

 return 0;
}

 Enter your name: Alice-Bob-Charles Bob-Charles

